Add unittest for dict in dygraph_to_static test=develop (#22854)
parent
5191e54494
commit
de1b390b79
@ -0,0 +1,139 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import six
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.dygraph.jit import dygraph_to_static_graph
|
||||
|
||||
PLACE = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace(
|
||||
)
|
||||
|
||||
|
||||
class SubNetWithDict(fluid.dygraph.Layer):
|
||||
def __init__(self, hidden_size=16, output_size=16):
|
||||
super(SubNetWithDict, self).__init__()
|
||||
|
||||
init_weight = lambda x: fluid.ParamAttr(initializer=fluid.initializer.Constant(x))
|
||||
|
||||
self.q_fc = fluid.dygraph.Linear(
|
||||
input_dim=hidden_size,
|
||||
output_dim=output_size,
|
||||
bias_attr=False,
|
||||
param_attr=init_weight(0.6))
|
||||
self.k_fc = fluid.dygraph.Linear(
|
||||
input_dim=hidden_size,
|
||||
output_dim=output_size,
|
||||
bias_attr=False,
|
||||
param_attr=init_weight(0.5))
|
||||
self.v_fc = fluid.dygraph.Linear(
|
||||
input_dim=hidden_size,
|
||||
output_dim=output_size,
|
||||
bias_attr=False,
|
||||
param_attr=init_weight(0.2))
|
||||
|
||||
@dygraph_to_static_graph
|
||||
def forward(self, input, cache=None):
|
||||
input = fluid.dygraph.to_variable(input)
|
||||
|
||||
q = self.q_fc(input)
|
||||
k = self.k_fc(input)
|
||||
v = self.v_fc(input)
|
||||
|
||||
if cache is not None:
|
||||
cache_k, cache_v = cache["k"], cache["v"]
|
||||
k = 0.1 * cache_k + k
|
||||
v = 0.2 * cache_v + v
|
||||
cache["k"], cache["v"] = k, v
|
||||
|
||||
weight = fluid.layers.matmul(x=q, y=k, transpose_y=True)
|
||||
weight = fluid.layers.softmax(weight)
|
||||
out = fluid.layers.matmul(weight, v)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class MainNetWithDict(fluid.dygraph.Layer):
|
||||
def __init__(self, batch_size=64, hidden_size=16, output_size=16):
|
||||
super(MainNetWithDict, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.hidden_size = hidden_size
|
||||
self.output_size = output_size
|
||||
self.sub_net = SubNetWithDict(hidden_size, output_size)
|
||||
|
||||
@dygraph_to_static_graph
|
||||
def forward(self, input, max_len=4):
|
||||
input = fluid.dygraph.to_variable(input)
|
||||
cache = {
|
||||
"k": fluid.layers.fill_constant(
|
||||
shape=[self.batch_size, self.output_size],
|
||||
dtype='float32',
|
||||
value=0),
|
||||
"v": fluid.layers.fill_constant(
|
||||
shape=[self.batch_size, self.output_size],
|
||||
dtype='float32',
|
||||
value=0),
|
||||
}
|
||||
max_len = input.shape[0] if input.shape[0] != max_len else max_len
|
||||
out = input
|
||||
for i in range(max_len):
|
||||
out = self.sub_net(out, cache)
|
||||
cache = self.update_cache(cache)
|
||||
|
||||
return out
|
||||
|
||||
def update_cache(self, cache):
|
||||
for k, val in six.iteritems(cache):
|
||||
cache[k] = fluid.layers.softmax(val)
|
||||
|
||||
return cache
|
||||
|
||||
|
||||
class TestNetWithDict(unittest.TestCase):
|
||||
"""
|
||||
TestCase for the transformation from control flow `if/else`
|
||||
dependent on tensor in Dygraph into Static `fluid.layers.cond`.
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
self.x = np.random.random([10, 16]).astype('float32')
|
||||
self.batch_size = self.x.shape[0]
|
||||
|
||||
def _run_static(self):
|
||||
main_program = fluid.Program()
|
||||
with fluid.program_guard(main_program):
|
||||
net = MainNetWithDict(batch_size=self.batch_size)
|
||||
# Transform into static graph
|
||||
out = net(self.x)
|
||||
exe = fluid.Executor(PLACE)
|
||||
exe.run(fluid.default_startup_program())
|
||||
ret = exe.run(main_program, fetch_list=out)
|
||||
return ret[0]
|
||||
|
||||
def _run_dygraph(self):
|
||||
with fluid.dygraph.guard(PLACE):
|
||||
net = MainNetWithDict(batch_size=self.batch_size)
|
||||
ret = net(self.x)
|
||||
return ret.numpy()
|
||||
|
||||
def test_ast_to_func(self):
|
||||
self.assertTrue((self._run_dygraph() == self._run_static()).all())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue