parent
c1931468e4
commit
e01b09410d
@ -1,44 +0,0 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
################################### Data Configuration ###################################
|
||||
TrainData(SimpleData(
|
||||
files = "trainer/tests/sample_filelist.txt",
|
||||
feat_dim = 3,
|
||||
context_len = 0,
|
||||
buffer_capacity = 1000000))
|
||||
################################### Algorithm Configuration ###################################
|
||||
settings(batch_size = 1000,
|
||||
learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
|
||||
################################### Network Configuration ###################################
|
||||
data = data_layer(name ="input", size=3)
|
||||
|
||||
fc1 = fc_layer(input=data, size=800,
|
||||
bias_attr=True,
|
||||
act=SigmoidActivation())
|
||||
|
||||
fc2 = fc_layer(input=fc1, size=800,
|
||||
bias_attr=True,
|
||||
act=SigmoidActivation())
|
||||
|
||||
output = fc_layer(input=[fc1, fc2], size=10,
|
||||
bias_attr=True,
|
||||
act=SoftmaxActivation())
|
||||
|
||||
lbl = data_layer(name ="label", size=1)
|
||||
|
||||
cost = classification_cost(input=output, label=lbl)
|
||||
outputs(cost)
|
@ -1,44 +0,0 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
################################### Data Configuration ###################################
|
||||
TrainData(SimpleData(
|
||||
files = "trainer/tests/sample_filelist.txt",
|
||||
feat_dim = 3,
|
||||
context_len = 0,
|
||||
buffer_capacity = 1000000))
|
||||
################################### Algorithm Configuration ###################################
|
||||
settings(batch_size = 1000,
|
||||
learning_method = MomentumOptimizer(momentum=0.5, sparse=False))
|
||||
################################### Network Configuration ###################################
|
||||
data = data_layer(name ="input", size=3)
|
||||
|
||||
fc1 = fc_layer(input=data, size=800,
|
||||
bias_attr=True,
|
||||
act=SigmoidActivation())
|
||||
|
||||
fc2 = fc_layer(input=fc1, size=800,
|
||||
bias_attr=True,
|
||||
act=SigmoidActivation())
|
||||
|
||||
output = fc_layer(input=[fc1, fc2], size=10,
|
||||
bias_attr=True,
|
||||
act=SoftmaxActivation())
|
||||
|
||||
lbl = data_layer(name ="label", size=1)
|
||||
|
||||
cost = classification_cost(input=output, label=lbl)
|
||||
outputs(cost)
|
@ -1,184 +0,0 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include <paddle/utils/PythonUtil.h>
|
||||
#include <algorithm>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "paddle/trainer/Trainer.h"
|
||||
|
||||
using namespace paddle; // NOLINT
|
||||
using namespace std; // NOLINT
|
||||
|
||||
DECLARE_int32(gpu_id);
|
||||
|
||||
DECLARE_bool(local);
|
||||
DECLARE_bool(use_gpu);
|
||||
|
||||
DECLARE_string(config);
|
||||
DECLARE_string(nics);
|
||||
|
||||
DEFINE_string(config_file_a, "", "config of one network to compare");
|
||||
DEFINE_string(config_file_b, "", "config of another network to compare");
|
||||
DEFINE_bool(need_high_accuracy,
|
||||
true,
|
||||
"whether need to run in double accuracy (recommended)");
|
||||
DEFINE_double(
|
||||
max_diff_ratio,
|
||||
0.0f,
|
||||
"max diff ratio allowed for outputs and parameters (value/gradient)");
|
||||
|
||||
struct ComData {
|
||||
vector<Argument> outArgs;
|
||||
vector<ParameterPtr> parameters;
|
||||
};
|
||||
|
||||
void calcGradient(ComData& data, const string configFile) {
|
||||
FLAGS_config = configFile;
|
||||
|
||||
FLAGS_local = true;
|
||||
FLAGS_use_gpu = false;
|
||||
|
||||
FLAGS_nics = "";
|
||||
|
||||
*ThreadLocalRand::getSeed() = 0;
|
||||
srand(0);
|
||||
|
||||
Trainer trainer;
|
||||
trainer.init(TrainerConfigHelper::createFromFlagConfig(), false);
|
||||
|
||||
data.parameters = trainer.getGradientMachine()->getParameters();
|
||||
trainer.getDataProvider()->setSkipShuffle();
|
||||
trainer.train();
|
||||
}
|
||||
|
||||
void checkBuffer(real* A,
|
||||
const char* desA,
|
||||
real* B,
|
||||
const char* desB,
|
||||
size_t len,
|
||||
size_t width = 1) {
|
||||
int nNum = 0;
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
real diff = fabs(A[i] - B[i]);
|
||||
if (diff > 0.0f &&
|
||||
diff / std::max(fabs(A[i]), fabs(B[i])) > FLAGS_max_diff_ratio) {
|
||||
nNum++;
|
||||
LOG(INFO) << "Row: " << i / width << ", " << desA << " : " << A[i]
|
||||
<< " " << desB << " : " << B[i];
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(0, nNum);
|
||||
LOG(INFO) << "\n\n";
|
||||
}
|
||||
|
||||
void compareGradient(ComData& comDataA, ComData& comDataB) {
|
||||
vector<Argument> outArgsA = comDataA.outArgs;
|
||||
vector<Argument> outArgsB = comDataB.outArgs;
|
||||
|
||||
for (size_t i = 0; i < outArgsA.size(); ++i) {
|
||||
CpuMatrix matA(outArgsA[i].value->getHeight(),
|
||||
outArgsA[i].value->getWidth());
|
||||
CpuMatrix matB(outArgsB[i].value->getHeight(),
|
||||
outArgsB[i].value->getWidth());
|
||||
|
||||
matA.copyFrom(*outArgsA[i].value);
|
||||
matB.copyFrom(*outArgsB[i].value);
|
||||
|
||||
LOG(INFO) << "\n--------------------------------"
|
||||
<< " Check Network Output_" << i << ":"
|
||||
<< " -------------------------------------\n";
|
||||
checkBuffer(matA.getData(),
|
||||
"network A output",
|
||||
matB.getData(),
|
||||
"network B output",
|
||||
matA.getElementCnt(),
|
||||
matA.getWidth());
|
||||
}
|
||||
|
||||
vector<ParameterPtr>& parametersA = comDataA.parameters;
|
||||
vector<ParameterPtr>& parametersB = comDataB.parameters;
|
||||
|
||||
LOG(INFO) << "\n\n--------------------------------"
|
||||
<< " Check Gradient Machine Parameters:"
|
||||
<< " -------------------------------------\n";
|
||||
for (size_t i = 0; i < parametersA.size(); ++i) {
|
||||
ParameterPtr parameterA, parameterB;
|
||||
parameterA = parametersA[i];
|
||||
parameterB = parametersB[i];
|
||||
|
||||
CpuVector paraA(parameterA->getSize());
|
||||
CpuVector paraB(parameterB->getSize());
|
||||
paraA.copyFrom(*parameterA->getBuf(PARAMETER_VALUE));
|
||||
paraB.copyFrom(*parameterB->getBuf(PARAMETER_VALUE));
|
||||
|
||||
LOG(INFO) << "\n\n----------- PARAMETER_VALUE: " << parameterA->getName()
|
||||
<< " ; size : " << paraA.getSize() << " ------------";
|
||||
checkBuffer(paraA.getData(),
|
||||
"Network A",
|
||||
paraB.getData(),
|
||||
"Network B",
|
||||
paraA.getSize());
|
||||
|
||||
CpuVector gradA(*parameterA->getBuf(PARAMETER_GRADIENT));
|
||||
CpuVector gradB(*parameterB->getBuf(PARAMETER_GRADIENT));
|
||||
|
||||
LOG(INFO) << "\n\n----------- PARAMETER_GRADIENT: " << parameterA->getName()
|
||||
<< " ; size : " << gradA.getSize() << " -----------";
|
||||
checkBuffer(gradA.getData(),
|
||||
"Network A",
|
||||
gradB.getData(),
|
||||
"Network B",
|
||||
gradA.getSize());
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Trainer, create) {
|
||||
ComData dataA;
|
||||
calcGradient(dataA, FLAGS_config_file_a);
|
||||
LOG(INFO) << "\n\ntraining of Network A is finished\n\n";
|
||||
|
||||
ComData dataB;
|
||||
calcGradient(dataB, FLAGS_config_file_b);
|
||||
LOG(INFO) << "\n\ntraining of the Network B is finished\n\n";
|
||||
|
||||
compareGradient(dataA, dataB);
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
paddle::initMain(argc, argv);
|
||||
testing::InitGoogleTest(&argc, argv);
|
||||
initPython(argc, argv);
|
||||
|
||||
#ifndef PADDLE_TYPE_DOUBLE
|
||||
if (FLAGS_need_high_accuracy) {
|
||||
LOG(INFO) << "skip test due to it's need high accuracy";
|
||||
return 0;
|
||||
}
|
||||
if (FLAGS_max_diff_ratio == 0.0f) {
|
||||
FLAGS_max_diff_ratio = 2e-4;
|
||||
LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
|
||||
<< " in low accuracy mode";
|
||||
}
|
||||
#else
|
||||
if (FLAGS_max_diff_ratio == 0.0f) {
|
||||
FLAGS_max_diff_ratio = 2e-7;
|
||||
LOG(INFO) << "auto set max_diff_ratio " << FLAGS_max_diff_ratio
|
||||
<< " in high accuracy mode";
|
||||
}
|
||||
#endif
|
||||
int ret = RUN_ALL_TESTS();
|
||||
return ret;
|
||||
}
|
Loading…
Reference in new issue