Merge branch 'develop' of github.com:PaddlePaddle/Paddle into fix_pserver_sub_blocks

revert-11626-fix-log
Yancey1989 7 years ago
commit e02cbf3538

@ -1,11 +1,18 @@
FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
# Use UBUNTU_MIRROR can speed up apt-get speed.
# ARG UBUNTU_MIRROR
# RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ubuntu.com/ubuntu#${UBUNTU_MIRROR}#g' /etc/apt/sources.list; fi'
RUN apt-get update && apt-get install -y python python-pip iputils-ping libgtk2.0-dev wget vim net-tools iftop python-opencv
RUN ln -s /usr/lib/x86_64-linux-gnu/libcudnn.so.7 /usr/lib/libcudnn.so && ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/libnccl.so
RUN pip install -U pip
RUN pip install -U kubernetes paddlepaddle
# IMPORTANT:
# Add "ENV http_proxy=http://ip:port" if your download is slow, and don't forget to unset it at runtime.
# exmaple: unset http_proxy && unset https_proxy && python fluid_benchmark.py ...
RUN pip install -U pip
RUN pip install -U kubernetes paddlepaddle
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()\npaddle.dataset.flowers.fetch()" | python'
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.mnist.train()\npaddle.dataset.mnist.test()\npaddle.dataset.imdb.fetch()" | python'
@ -14,9 +21,11 @@ RUN pip uninstall -y paddlepaddle && mkdir /workspace
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root
RUN chmod +x /usr/bin/paddle_k8s
ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s
RUN pip install /*.whl && rm -f /*.whl
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py recordio_converter.py models/ /workspace/
ADD fluid_benchmark.py recordio_converter.py args.py recordio_converter.py run.sh run_fluid_benchmark.sh /workspace/
ADD models/ /workspace/models/

@ -97,7 +97,7 @@ def dist_transpile(trainer_id, args):
return train_program, fluid.default_startup_program()
else:
raise ValueError(
'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
)
@ -264,8 +264,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
break
else:
loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
if args.update_method == "pserver":
exe.bcast_params()
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
@ -301,9 +299,18 @@ def print_train_time(start_time, end_time, num_samples):
(num_samples, train_elapsed, examples_per_sec))
def print_paddle_envs():
print('----------- Configuration envs -----------')
for k in os.environ:
if "PADDLE_" in k:
print "ENV %s:%s" % (k, os.environ[k])
print('------------------------------------------------')
def main():
args = parse_args()
print_arguments(args)
print_paddle_envs()
# the unique trainer id, starting from 0, needed by trainer
# only

@ -17,6 +17,7 @@ import copy
import argparse
import random
import os
import copy
from kube_templates import pserver, trainer, envs
@ -108,10 +109,9 @@ def gen_job():
tn_container["ports"][0]["containerPort"] = spreadport
envs.append({"name": "PADDLE_JOB_NAME", "value": args.jobname})
envs.append({"name": "TRAINERS", "value": str(args.trainers)})
envs.append({"name": "PSERVERS", "value": str(args.pservers)})
envs.append({"name": "PADDLE_TRAINERS", "value": str(args.trainers)})
envs.append({"name": "PADDLE_PSERVERS", "value": str(args.pservers)})
envs.append({"name": "ENTRY", "value": args.entry})
envs.append({"name": "PADDLE_INIT_PORT", "value": str(args.port)})
envs.append({"name": "PADDLE_PSERVER_PORT", "value": str(args.port)})
# NOTE: these directories below are cluster specific, please modify
# this settings before you run on your own cluster.
@ -166,17 +166,23 @@ def gen_job():
tn["spec"]["template"]["spec"]["volumes"] = volumes
tn_container["volumeMounts"] = volumeMounts
ps_container["env"] = envs
ps_container["env"].append({"name": "TRAINING_ROLE", "value": "PSERVER"})
ps_container["env"] = copy.deepcopy(envs)
ps_container["env"].append({
"name": "PADDLE_TRAINING_ROLE",
"value": "PSERVER"
})
tn_container["env"] = envs
if args.disttype == "pserver":
tn_container["env"].append({
"name": "TRAINING_ROLE",
"name": "PADDLE_TRAINING_ROLE",
"value": "TRAINER"
})
elif args.disttype == "nccl2" or args.disttype == "local":
# NCCL2 have no training role, set to plain WORKER
tn_container["env"].append({"name": "TRAINING_ROLE", "value": "WORKER"})
tn_container["env"].append({
"name": "PADDLE_TRAINING_ROLE",
"value": "WORKER"
})
os.mkdir(args.jobname)
if args.disttype == "pserver":

@ -1,7 +1,7 @@
#!/bin/bash
python gen_doc.py layers --submodules control_flow device io nn ops tensor detection learning_rate_scheduler metric > layers.rst
for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer
for module in data_feeder clip metrics executor initializer io nets optimizer param_attr profiler regularizer transpiler
do
python gen_doc.py ${module} > ${module}.rst
done

@ -0,0 +1,46 @@
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
==========
transpiler
==========
DistributeTranspiler
--------------------
.. autoclass:: paddle.fluid.transpiler.DistributeTranspiler
:members:
:noindex:
InferenceTranspiler
-------------------
.. autoclass:: paddle.fluid.transpiler.InferenceTranspiler
:members:
:noindex:
memory_optimize
---------------
.. autofunction:: paddle.fluid.transpiler.memory_optimize
:noindex:
release_memory
--------------
.. autofunction:: paddle.fluid.transpiler.release_memory
:noindex:
HashName
--------
.. autoclass:: paddle.fluid.transpiler.HashName
:members:
:noindex:
RoundRobin
----------
.. autoclass:: paddle.fluid.transpiler.RoundRobin
:members:
:noindex:

@ -168,13 +168,13 @@ cd /paddle/python/paddle/fluid/tests/book
第二步启动Parameter Server
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.2 TRAINERS=2 POD_IP=192.168.1.2 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=PSERVER python test_fit_a_line.py
PADDLE_PSERVER_PORT=6174 PADDLE_PSERVER_IPS=192.168.1.2 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=192.168.1.2 PADDLE_TRAINER_ID=1 PADDLE_TRAINING_ROLE=PSERVER python test_fit_a_line.py
```
执行命令后请等待出现提示: ```Server listening on 192.168.1.2:6174 ```, 表示Paramter Server已经正常启动。
第三步启动Trainer
```bash
PADDLE_INIT_PORT=6174 PADDLE_INIT_PSERVERS=192.168.1.3 TRAINERS=2 POD_IP=192.168.1.3 PADDLE_INIT_TRAINER_ID=1 TRAINING_ROLE=TRAINER python test_fit_a_line.py
PADDLE_PSERVER_PORT=6174 PADDLE_PSERVER_IPS=192.168.1.3 PADDLE_TRAINERS=2 PADDLE_CURRENT_IPP=192.168.1.3 PADDLE_TRAINER_ID=1 PADDLE_TRAINING_ROLE=TRAINER python test_fit_a_line.py
```
由于我们定义的Trainer的数量是2个因此需要在另外一个计算节点上再启动一个Trainer。

@ -114,8 +114,8 @@ def gen_train_list(file_pattern, trainers, trainer_id):
ret_list.append(f)
return ret_list
trainers = int(os.getenv("TRAINERS"))
trainer_id = int(os.getenv("PADDLE_INIT_TRAINER_ID"))
trainers = int(os.getenv("PADDLE_TRAINERS"))
trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
data_file = fluid.layers.io.open_files(
filenames=gen_train_list("./mnist-[0-9]*.recordio", 2, 0),
thread_num=1,

@ -13,6 +13,7 @@ cpu_noavx_openblas `fluid.tgz <https://guest:@paddleci.ngrok.io/repository
cuda7.5_cudnn5_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/fluid.tgz>`_
cuda8.0_cudnn5_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/fluid.tgz>`_
cuda8.0_cudnn7_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/fluid.tgz>`_
cuda9.0_cudnn7_avx_mkl `fluid.tgz <https://guest:@paddleci.ngrok.io/repository/download/Manylinux1_Cuda90cudnn7avxMkl/.lastSuccessful/fluid.tgz>`_
====================== ========================================
从源码编译

@ -40,10 +40,9 @@ void Main(bool use_gpu) {
//# 2. Prepare input.
int64_t data[4] = {1, 2, 3, 4};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "",
.shape = std::vector<int>({4, 1}),
.data = buf,
.data = PaddleBuf(data, sizeof(data)),
.dtype = PaddleDType::INT64};
// For simplicity, we set all the slots with the same data.
@ -55,14 +54,12 @@ void Main(bool use_gpu) {
//# 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "output buffer size: " << outputs.front().data.length;
const size_t num_elements = outputs.front().data.length / sizeof(float);
LOG(INFO) << "output buffer size: " << outputs.front().data.length();
const size_t num_elements = outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
}
// TODO(Superjomn): this is should be free automatically
free(outputs[0].data.data);
}
}
@ -86,10 +83,9 @@ void MainThreads(int num_threads, bool use_gpu) {
for (int batch_id = 0; batch_id < num_batches; ++batch_id) {
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "",
.shape = std::vector<int>({4, 1}),
.data = buf,
.data = PaddleBuf(data, sizeof(data)),
.dtype = PaddleDType::INT64};
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> outputs;
@ -99,13 +95,13 @@ void MainThreads(int num_threads, bool use_gpu) {
// 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "TID: " << tid << ", "
<< "output buffer size: " << outputs.front().data.length;
const size_t num_elements = outputs.front().data.length / sizeof(float);
<< "output buffer size: " << outputs.front().data.length();
const size_t num_elements =
outputs.front().data.length() / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
LOG(INFO) << static_cast<float*>(outputs.front().data.data())[i];
}
free(outputs[0].data.data);
}
});
}

@ -13,3 +13,53 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/contrib/inference/paddle_inference_api.h"
namespace paddle {
PaddleBuf::PaddleBuf(PaddleBuf&& other)
: data_(other.data_),
length_(other.length_),
memory_owned_(other.memory_owned_) {
other.memory_owned_ = false;
other.data_ = nullptr;
other.length_ = 0;
}
PaddleBuf::PaddleBuf(const PaddleBuf& other) { *this = other; }
PaddleBuf& PaddleBuf::operator=(const PaddleBuf& other) {
// only the buffer with external memory can be copied
assert(!other.memory_owned_);
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
return *this;
}
void PaddleBuf::Resize(size_t length) {
// Only the owned memory can be reset, the external memory can't be changed.
if (length_ == length) return;
assert(memory_owned_);
Free();
data_ = new char[length];
length_ = length;
memory_owned_ = true;
}
void PaddleBuf::Reset(void* data, size_t length) {
Free();
memory_owned_ = false;
data_ = data;
length_ = length;
}
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
assert(length_ > 0);
delete static_cast<char*>(data_);
data_ = nullptr;
length_ = 0;
}
}
} // namespace paddle

@ -21,6 +21,7 @@ limitations under the License. */
#pragma once
#include <cassert>
#include <memory>
#include <string>
#include <vector>
@ -32,12 +33,38 @@ enum PaddleDType {
INT64,
};
struct PaddleBuf {
void* data; // pointer to the data memory.
size_t length; // number of memory bytes.
class PaddleBuf {
public:
PaddleBuf() = default;
PaddleBuf(PaddleBuf&& other);
// Copy only available when memory is managed externally.
explicit PaddleBuf(const PaddleBuf&);
PaddleBuf& operator=(const PaddleBuf&);
// Do not own the memory.
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
// Own memory.
PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
// Resize to `length` bytes.
void Resize(size_t length);
// Reset to external memory.
void Reset(void* data, size_t length);
bool empty() const { return length_ == 0; }
void* data() const { return data_; }
size_t length() const { return length_; }
~PaddleBuf() { Free(); }
private:
void Free();
void* data_{nullptr}; // pointer to the data memory.
size_t length_{0}; // number of memory bytes.
bool memory_owned_{true};
};
struct PaddleTensor {
PaddleTensor() = default;
std::string name; // variable name.
std::vector<int> shape;
// TODO(Superjomn) for LoD support, add a vector<vector<int>> field if needed.
@ -67,8 +94,9 @@ class PaddlePredictor {
// Predict an record.
// The caller should be responsible for allocating and releasing the memory of
// `inputs`. `inputs` should be alive until Run returns. caller should be
// responsible for releasing the memory of `output_data`.
// `inputs`. `inputs` should be available until Run returns. Caller should be
// responsible for the output tensor's buffer, either allocated or passed from
// outside.
virtual bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data) = 0;

@ -48,7 +48,7 @@ bool PaddleInferenceAnakinPredictor::Run(
auto d_tensor_in_p = executor_.get_in(input.name);
float *d_data_p = d_tensor_in_p->mutable_data();
if (cudaMemcpy(d_data_p,
static_cast<float *>(input.data.data),
static_cast<float *>(input.data.data()),
d_tensor_in_p->valid_size() * sizeof(float),
cudaMemcpyHostToDevice) != 0) {
LOG(ERROR) << "copy data from CPU to GPU error";
@ -65,8 +65,11 @@ bool PaddleInferenceAnakinPredictor::Run(
for (auto &output : *output_data) {
auto *tensor = executor_.get_out(output.name);
output.shape = tensor->shape();
if (output.data.length() < tensor->valid_size() * sizeof(float)) {
output.data.Resize(tensor->valid_size() * sizeof(float));
}
// Copy data from GPU -> CPU
if (cudaMemcpy(output.data.data,
if (cudaMemcpy(output.data.data(),
tensor->mutable_data(),
tensor->valid_size() * sizeof(float),
cudaMemcpyDeviceToHost) != 0) {

@ -37,28 +37,26 @@ TEST(inference, anakin) {
float data[1 * 3 * 224 * 224] = {1.0f};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "input_0",
.shape = std::vector<int>({1, 3, 224, 224}),
.data = buf,
.data = PaddleBuf(data, sizeof(data)),
.dtype = PaddleDType::FLOAT32};
// For simplicity, we set all the slots with the same data.
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
std::vector<PaddleTensor> paddle_tensor_feeds;
paddle_tensor_feeds.emplace_back(std::move(tensor));
float data_out[1000];
PaddleBuf buf_out{.data = data_out, .length = sizeof(data)};
PaddleTensor tensor_out{.name = "prob_out",
.shape = std::vector<int>({1000, 1}),
.data = buf_out,
.data = PaddleBuf(),
.dtype = PaddleDType::FLOAT32};
std::vector<PaddleTensor> outputs(1, tensor_out);
std::vector<PaddleTensor> outputs;
outputs.emplace_back(std::move(tensor_out));
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
float* data_o = static_cast<float*>(outputs[0].data.data);
float* data_o = static_cast<float*>(outputs[0].data.data());
for (size_t j = 0; j < 1000; ++j) {
LOG(INFO) << "output[" << j << "]: " << data_o[j];
}

@ -178,8 +178,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
// TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
std::memcpy(static_cast<void *>(input_ptr),
inputs[i].data.data,
inputs[i].data.length);
inputs[i].data.data(),
inputs[i].data.length());
feeds->push_back(input);
}
return true;
@ -241,10 +241,11 @@ bool NativePaddlePredictor::GetFetch(
}
outputs->at(i).shape = shape;
outputs->at(i).data.length = sizeof(float) * data.size();
outputs->at(i).data.data = malloc(outputs->at(i).data.length);
std::memcpy(
outputs->at(i).data.data, data.data(), outputs->at(i).data.length);
auto &buffer = outputs->at(i).data;
if (buffer.empty() || buffer.length() < sizeof(float) * data.size()) {
buffer.Resize(sizeof(float) * data.size());
}
std::memcpy(buffer.data(), data.data(), buffer.length());
outputs->at(i).dtype = PaddleDType::FLOAT32;
// TODO(panyx0718): support other types? fill tensor name? avoid a copy.
}

@ -27,13 +27,12 @@ namespace paddle {
PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
PaddleTensor pt;
pt.data.data = t->data<void>();
if (t->type() == typeid(int64_t)) {
pt.data.length = t->numel() * sizeof(int64_t);
pt.data.Reset(t->data<void>(), t->numel() * sizeof(int64_t));
pt.dtype = PaddleDType::INT64;
} else if (t->type() == typeid(float)) {
pt.data.length = t->numel() * sizeof(float);
pt.data.Reset(t->data<void>(), t->numel() * sizeof(float));
pt.dtype = PaddleDType::FLOAT32;
} else {
LOG(FATAL) << "unsupported type.";
@ -79,8 +78,8 @@ void MainWord2Vec(bool use_gpu) {
std::vector<PaddleTensor> outputs;
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
ASSERT_EQ(outputs.size(), 1UL);
size_t len = outputs[0].data.length;
float* data = static_cast<float*>(outputs[0].data.data);
size_t len = outputs[0].data.length();
float* data = static_cast<float*>(outputs[0].data.data());
for (size_t j = 0; j < len / sizeof(float); ++j) {
ASSERT_LT(data[j], 1.0);
ASSERT_GT(data[j], -1.0);
@ -103,8 +102,6 @@ void MainWord2Vec(bool use_gpu) {
EXPECT_LT(lod_data[i] - data[i], 1e-3);
EXPECT_GT(lod_data[i] - data[i], -1e-3);
}
free(outputs[0].data.data);
}
void MainImageClassification(bool use_gpu) {
@ -143,13 +140,12 @@ void MainImageClassification(bool use_gpu) {
std::vector<PaddleTensor> outputs;
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
ASSERT_EQ(outputs.size(), 1UL);
size_t len = outputs[0].data.length;
float* data = static_cast<float*>(outputs[0].data.data);
size_t len = outputs[0].data.length();
float* data = static_cast<float*>(outputs[0].data.data());
float* lod_data = output1.data<float>();
for (size_t j = 0; j < len / sizeof(float); ++j) {
EXPECT_NEAR(lod_data[j], data[j], 1e-3);
}
free(data);
}
void MainThreadsWord2Vec(bool use_gpu) {
@ -192,8 +188,8 @@ void MainThreadsWord2Vec(bool use_gpu) {
// check outputs range
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
const size_t len = local_outputs[0].data.length();
float* data = static_cast<float*>(local_outputs[0].data.data());
for (size_t j = 0; j < len / sizeof(float); ++j) {
ASSERT_LT(data[j], 1.0);
ASSERT_GT(data[j], -1.0);
@ -205,7 +201,6 @@ void MainThreadsWord2Vec(bool use_gpu) {
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
@ -251,14 +246,13 @@ void MainThreadsImageClassification(bool use_gpu) {
// check outputs correctness
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
const size_t len = local_outputs[0].data.length();
float* data = static_cast<float*>(local_outputs[0].data.data());
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {

@ -321,7 +321,8 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
}
void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope, bool create_vars) {
bool create_local_scope, bool create_vars,
bool keep_kids) {
Scope* local_scope = scope;
if (create_vars) {
if (create_local_scope) {
@ -344,12 +345,20 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
}
platform::DeviceContextPool::Instance().Get(place_)->Wait();
if (create_vars && create_local_scope) {
if (local_scope != scope) {
scope->DeleteScope(local_scope);
} else {
// Delete the local scopes created in operators.
scope->DropKids();
if (!keep_kids) {
// By default, we should delete all kid scopes after run executor because
// some operators may create local scope when running, such as while_op.
// But when while_op also create a local executor to run it's sub block,
// the sub scopes it created should not be dropped immediately, because
// while_grad_op will use some variables created during while_op run, so
// we need to keep the kids and wait for the outer executor to drop them.
scope->DropKids();
}
}
if (FLAGS_benchmark) {
VLOG(2) << "-------------------------------------------------------";
VLOG(2) << "Memory used after deleting local scope: "

@ -78,7 +78,7 @@ class Executor {
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
bool create_local_scope = true,
bool create_vars = true);
bool create_vars = true, bool keep_kids = false);
void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
std::map<std::string, const LoDTensor*>* feed_targets,

@ -27,7 +27,7 @@ void TensorRTSubGraphPass::Run(DataFlowGraph *graph) {
SubGraphFuse(graph, node_inside_subgraph_teller_);
}
} // analysis
} // inference
} // namespace analysis
} // namespace inference
} // paddle
} // namespace paddle

@ -143,7 +143,7 @@ $$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
__attribute__((unused)) constexpr char TanhShrinkDoc[] = R"DOC(
TanhShrink Activation Operator.
$$out = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
)DOC";
@ -385,7 +385,7 @@ class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(
STanh Activation Operator.
$$out = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
)DOC");
}

@ -21,8 +21,6 @@ namespace operators {
using batch_norm_bwd = mkldnn::batch_normalization_backward;
using batch_norm_fwd = mkldnn::batch_normalization_forward;
using framework::DataLayout;
using framework::Tensor;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
@ -31,18 +29,6 @@ using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;
using platform::to_void_cast;
template <typename T>
using EigenArrayMap =
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
namespace {
template <typename T>
struct bn_type_traits {

@ -22,22 +22,6 @@ limitations under the License. */
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;
template <typename T>
using EigenArrayMap =
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
class BatchNormOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

@ -19,6 +19,22 @@ limitations under the License. */
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;
template <typename T>
using EigenArrayMap =
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename DeviceContext, typename T>
class BatchNormKernel : public framework::OpKernel<T> {
public:

@ -110,6 +110,7 @@ REGISTER_OPERATOR(bilinear_interp, ops::BilinearInterpOp,
ops::BilinearInterpOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(bilinear_interp_grad, ops::BilinearInterpOpGrad);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::BilinearInterpKernel<float>);
REGISTER_OP_CPU_KERNEL(bilinear_interp, ops::BilinearInterpKernel<float>,
ops::BilinearInterpKernel<uint8_t>);
REGISTER_OP_CPU_KERNEL(bilinear_interp_grad,
ops::BilinearInterpGradKernel<float>);

@ -46,8 +46,10 @@ class BilinearInterpKernel : public framework::OpKernel<T> {
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
float ratio_h =
(out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(output, input, input_t->numel() * sizeof(T));
@ -56,24 +58,24 @@ class BilinearInterpKernel : public framework::OpKernel<T> {
for (int i = 0; i < out_h; ++i) { // loop for images
int h = ratio_h * i;
int hid = (h < in_h - 1) ? 1 : 0;
T h1lambda = ratio_h * i - h;
T h2lambda = 1 - h1lambda;
float h1lambda = ratio_h * i - h;
float h2lambda = 1.f - h1lambda;
for (int j = 0; j < out_w; ++j) {
int w = ratio_w * j;
int wid = (w < in_w - 1) ? 1 : 0;
T w1lambda = ratio_w * j - w;
T w2lambda = 1 - w1lambda;
float w1lambda = ratio_w * j - w;
float w2lambda = 1.f - w1lambda;
// calculate four position for bilinear interpolation
const T* in_pos = &input[k * in_chw + h * in_w + w];
T* out_pos = &output[k * out_chw + i * out_w + j];
for (int c = 0; c < channels; ++c) { // loop for channels
// bilinear interpolation
out_pos[0] =
out_pos[0] = static_cast<T>(
h2lambda * (w2lambda * in_pos[0] + w1lambda * in_pos[wid]) +
h1lambda * (w2lambda * in_pos[hid * in_w] +
w1lambda * in_pos[hid * in_w + wid]);
w1lambda * in_pos[hid * in_w + wid]));
in_pos += in_hw;
out_pos += out_hw;
}
@ -117,8 +119,10 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
int in_chw = channels * in_hw;
int out_chw = channels * out_hw;
T ratio_h = (out_h > 1) ? static_cast<T>(in_h - 1) / (out_h - 1) : 0.f;
T ratio_w = (out_w > 1) ? static_cast<T>(in_w - 1) / (out_w - 1) : 0.f;
float ratio_h =
(out_h > 1) ? static_cast<float>(in_h - 1) / (out_h - 1) : 0.f;
float ratio_w =
(out_w > 1) ? static_cast<float>(in_w - 1) / (out_w - 1) : 0.f;
if (in_h == out_h && in_w == out_w) {
memcpy(d_input, d_output, d_input_t->numel() * sizeof(T));
@ -127,22 +131,24 @@ class BilinearInterpGradKernel : public framework::OpKernel<T> {
for (int i = 0; i < out_h; ++i) { // loop for images
int h = ratio_h * i;
int hid = (h < in_h - 1) ? 1 : 0;
T h1lambda = ratio_h * i - h;
T h2lambda = 1 - h1lambda;
float h1lambda = ratio_h * i - h;
float h2lambda = 1 - h1lambda;
for (int j = 0; j < out_w; ++j) {
int w = ratio_w * j;
int wid = (w < in_w - 1) ? 1 : 0;
T w1lambda = ratio_w * j - w;
T w2lambda = 1 - w1lambda;
float w1lambda = ratio_w * j - w;
float w2lambda = 1 - w1lambda;
T* in_pos = &d_input[k * in_chw + h * in_w + w];
const T* out_pos = &d_output[k * out_chw + i * out_w + j];
for (int c = 0; c < channels; ++c) { // loop for channels
in_pos[0] += h2lambda * w2lambda * out_pos[0];
in_pos[wid] += h2lambda * w1lambda * out_pos[0];
in_pos[hid * in_w] += h1lambda * w2lambda * out_pos[0];
in_pos[hid * in_w + wid] += h1lambda * w1lambda * out_pos[0];
in_pos[0] += static_cast<T>(h2lambda * w2lambda * out_pos[0]);
in_pos[wid] += static_cast<T>(h2lambda * w1lambda * out_pos[0]);
in_pos[hid * in_w] +=
static_cast<T>(h1lambda * w2lambda * out_pos[0]);
in_pos[hid * in_w + wid] +=
static_cast<T>(h1lambda * w1lambda * out_pos[0]);
in_pos += in_hw;
out_pos += out_hw;
}

@ -146,6 +146,6 @@ REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$");
REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU,
paddle::operators::LogicalNotFunctor);
REGISTER_BINARY_LOGICAL_OP(logical_xor,
"$$Out = (X || Y) \\, \\&\\& \\, !(X \\&\\& Y)$$");
"$$Out = (X || Y) \\&\\& !(X \\&\\& Y)$$");
REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU,
paddle::operators::LogicalXorFunctor);

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save