Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_dilation

mobile_baidu
xzl 8 years ago
commit e06f8fcff5

@ -67,7 +67,7 @@ func main() {
cp, err = pserver.LoadCheckpoint(e, idx)
if err != nil {
if err == pserver.ErrCheckpointNotFound {
log.Info("Could not find the pserver checkpoint.")
log.Info("load checkpoint error", "error", err)
} else {
panic(err)
}
@ -99,7 +99,7 @@ func main() {
candy.Must(err)
go func() {
log.Info("starting pserver", log.Ctx{"port": *port})
log.Info("serving pserver", log.Ctx{"port": *port})
err = http.Serve(l, nil)
candy.Must(err)
}()

@ -123,7 +123,8 @@ func paddle_set_dataset(client C.paddle_master_client, path **C.char, size C.int
}
err := c.SetDataset(paths)
if err != nil {
log.Error("error set dataset", log.Ctx{"error": err})
log.Error("error set dataset",
log.Ctx{"error": err, "paths": paths})
return C.PADDLE_MASTER_ERROR
}

@ -121,6 +121,7 @@ func (c *Client) StartGetRecords(passID int) {
}
func (c *Client) getRecords(passID int) {
i := 0
for {
t, err := c.getTask(passID)
if err != nil {
@ -130,12 +131,20 @@ func (c *Client) getRecords(passID int) {
c.ch <- record{nil, err}
break
}
if err.Error() == ErrPassAfter.Error() {
// wait util last pass finishes
time.Sleep(time.Second * 3)
continue
if i%60 == 0 {
log.Debug("getTask of passID error.",
log.Ctx{"error": err, "passID": passID})
i = 0
}
log.Error("getTask error.", log.Ctx{"error": err})
// if err.Error() == ErrPassAfter.Error()
// wait util last pass finishes
// if other error such as network error
// wait to reconnect or task time out
time.Sleep(time.Second * 3)
i += 3
continue
}
for _, chunk := range t.Chunks {

@ -117,6 +117,7 @@ func TestNextRecord(t *testing.T) {
if e != nil {
panic(e)
}
// test for n passes
for pass := 0; pass < 10; pass++ {
c.StartGetRecords(pass)

@ -71,9 +71,15 @@ func newOptimizer(paramWithConfigs ParameterWithConfig, State []byte) *optimizer
cstate = unsafe.Pointer(&s[0])
}
var cptr (*C.uchar)
if len(c) > 0 {
cptr = (*C.uchar)(&c[0])
} else {
log.Error("empty config", "param name", paramWithConfigs.Param.Name)
}
o.config = c
o.opt = C.paddle_create_optimizer(
(*C.uchar)(&c[0]),
cptr,
C.int(len(c)),
C.paddle_element_type(p.ElementType),
cbuffer,

@ -17,12 +17,11 @@ package pserver
import (
"bufio"
"bytes"
"crypto/md5"
"encoding/gob"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"hash/crc32"
"io/ioutil"
"os"
"path"
@ -40,7 +39,7 @@ type ElementType int
// ErrCheckpointNotFound indicates that the pserver checkpoint could
// not be found.
var ErrCheckpointNotFound = errors.New("checkpoint not found")
var ErrCheckpointNotFound = errors.New("checkpoint not found in etcd")
// RPC error message.
const (
@ -76,7 +75,7 @@ type ParameterWithConfig struct {
type checkpointMeta struct {
UUID string `json:"uuid"`
Path string `json:"path"`
MD5 string `json:"md5"`
CRC32 uint32 `json:"crc32"`
Timestamp int64 `json:"timestamp"`
}
@ -92,7 +91,7 @@ type Service struct {
idx int
checkpointInterval time.Duration
checkpointPath string
client *EtcdClient
client KVStore
mu sync.Mutex
optMap map[string]*optimizer
@ -104,7 +103,12 @@ type parameterCheckpoint struct {
State []byte
}
func loadMeta(e *EtcdClient, idx int) (meta checkpointMeta, err error) {
type KVStore interface {
GetKey(key string, timeout time.Duration) ([]byte, error)
PutKey(key string, value []byte, timeout time.Duration, withLease bool) error
}
func loadMeta(e KVStore, idx int) (meta checkpointMeta, err error) {
v, err := e.GetKey(PsCheckpoint+strconv.Itoa(idx), 3*time.Second)
if err != nil {
return
@ -123,7 +127,7 @@ func loadMeta(e *EtcdClient, idx int) (meta checkpointMeta, err error) {
}
// LoadCheckpoint loads checkpoint from file.
func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
func LoadCheckpoint(e KVStore, idx int) (Checkpoint, error) {
log.Info("Loading checkpoint", "pserver index", idx)
defer traceTime(time.Now(), "load checkpoint")
@ -137,11 +141,8 @@ func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
return nil, err
}
// TODO(helin): change MD5 to CRC since CRC is better for file
// checksum in our use case (emphasize speed over security).
h := md5.New()
md5 := hex.EncodeToString(h.Sum(content))
if md5 != cpMeta.MD5 {
crc32 := crc32.ChecksumIEEE(content)
if crc32 != cpMeta.CRC32 {
return nil, errors.New(WrongChecksum)
}
@ -150,12 +151,13 @@ func LoadCheckpoint(e *EtcdClient, idx int) (Checkpoint, error) {
if err = dec.Decode(&cp); err != nil {
return nil, err
}
return cp, nil
}
// NewService creates a new service, will bypass etcd registration if no
// endpoints specified. It will recovery from checkpoint file if a exists a specified checkpoint.
func NewService(idx int, interval time.Duration, path string, client *EtcdClient, cp Checkpoint) (*Service, error) {
func NewService(idx int, interval time.Duration, path string, client KVStore, cp Checkpoint) (*Service, error) {
s := &Service{
idx: idx,
checkpointInterval: interval,
@ -173,6 +175,7 @@ func NewService(idx int, interval time.Duration, path string, client *EtcdClient
}
s.optMap[p.Param.Name] = newOptimizer(p, item.State)
}
close(s.initialized)
}
return s, nil
}
@ -221,7 +224,7 @@ func (s *Service) FinishInitParams(_ int, _ *int) error {
for range t {
err := s.checkpoint()
if err != nil {
log.Error("finish init params error", log.Ctx{"error": err})
log.Error("checkpoint error", log.Ctx{"error": err})
}
}
}()
@ -274,6 +277,7 @@ func (s *Service) GetParam(name string, parameter *Parameter) error {
parameter.Name = name
parameter.ElementType = opt.elementType
parameter.Content = opt.GetWeights()
log.Info("sending parameter to the trainer", "name", parameter.Name, "size", len(parameter.Content), "type", parameter.ElementType)
return nil
}
@ -354,20 +358,29 @@ func (s *Service) checkpoint() (err error) {
oldMeta, err := loadMeta(s.client, s.idx)
if err == ErrCheckpointNotFound {
log.Info("Do not have existing checkpoint.")
log.Info("old meta not found, skip removing old meta")
err = nil
} else if err == nil {
log.Info("removing old meta")
if oldMeta.Path != "" {
rmErr := os.Remove(oldMeta.Path)
if rmErr != nil {
// log error, but still treat checkpoint as
// successful.
log.Error("remove old meta file error", log.Ctx{"error": rmErr})
}
}
}
if err != nil {
return
}
h := md5.New()
md5 := hex.EncodeToString(h.Sum(buf.Bytes()))
crc32 := crc32.ChecksumIEEE(buf.Bytes())
cpMeta := checkpointMeta{
UUID: id,
Timestamp: time.Now().UnixNano(),
MD5: md5,
CRC32: crc32,
Path: p,
}
@ -381,14 +394,5 @@ func (s *Service) checkpoint() (err error) {
return
}
if oldMeta.Path != "" {
rmErr := os.Remove(oldMeta.Path)
if rmErr != nil {
// log error, but still treat checkpoint as
// successful.
log.Error("remove old meta file error", log.Ctx{"error": rmErr})
}
}
return
}

@ -0,0 +1,86 @@
package pserver
import (
"bytes"
"encoding/binary"
"fmt"
"testing"
"time"
"github.com/stretchr/testify/assert"
)
const testDir = "./test_data"
type myKV struct {
m map[string][]byte
}
func (m *myKV) GetKey(key string, timeout time.Duration) ([]byte, error) {
if m.m == nil {
m.m = make(map[string][]byte)
}
return m.m[key], nil
}
func (m *myKV) PutKey(key string, value []byte, timeout time.Duration, withLease bool) error {
if m.m == nil {
m.m = make(map[string][]byte)
}
m.m[key] = value
return nil
}
func TestCheckpoint(t *testing.T) {
kv := &myKV{}
s, err := NewService(0, time.Hour, testDir, kv, nil)
assert.Nil(t, err)
err = s.checkpoint()
assert.Nil(t, err)
_, err = LoadCheckpoint(kv, 0)
assert.Nil(t, err)
}
func float32ToByte(f float32) []byte {
var buf bytes.Buffer
err := binary.Write(&buf, binary.LittleEndian, f)
if err != nil {
fmt.Println("binary.Write failed:", err)
}
return buf.Bytes()
}
func TestCheckpointWithData(t *testing.T) {
kv := &myKV{}
s, err := NewService(0, time.Hour, testDir, kv, nil)
assert.Nil(t, err)
var content []byte
for i := 0; i < 50000; i++ {
content = append(content, float32ToByte(float32(i))...)
}
p1 := Parameter{Name: "p1", ElementType: 1, Content: content}
err = s.InitParam(ParameterWithConfig{Param: p1}, nil)
assert.Nil(t, err)
err = s.FinishInitParams(0, nil)
assert.Nil(t, err)
var p2 Parameter
err = s.GetParam(p1.Name, &p2)
assert.Nil(t, err)
assert.Equal(t, p1, p2)
err = s.checkpoint()
assert.Nil(t, err)
cp, err := LoadCheckpoint(kv, 0)
assert.Nil(t, err)
s1, err := NewService(0, time.Hour, testDir, kv, cp)
assert.Nil(t, err)
var p3 Parameter
err = s1.GetParam(p1.Name, &p3)
assert.Nil(t, err)
assert.Equal(t, p1, p3)
}

@ -178,7 +178,3 @@ func TestBlockUntilInitialized(t *testing.T) {
wg.Wait()
}
func TestCheckpointSpeed(t *testing.T) {
//TODO(zhihong): test speed
}

@ -64,12 +64,18 @@ paddle_error paddle_gradient_machine_create_for_inference_with_parameters(
modelConfigProtobuf.resize(modelConfigSize);
is.read(&modelConfigProtobuf[0], modelConfigSize);
paddle::TrainerConfig config;
paddle::ModelConfig modelConfig;
if (!config.ParseFromString(modelConfigProtobuf) || !config.IsInitialized()) {
return kPD_PROTOBUF_ERROR;
if (!modelConfig.ParseFromString(modelConfigProtobuf) ||
!modelConfig.IsInitialized()) {
return kPD_PROTOBUF_ERROR;
}
} else {
modelConfig = config.model_config();
}
auto ptr = new paddle::capi::CGradientMachine();
ptr->machine.reset(paddle::GradientMachine::create(
config.model_config(), CREATE_MODE_TESTING, {paddle::PARAMETER_VALUE}));
modelConfig, CREATE_MODE_TESTING, {paddle::PARAMETER_VALUE}));
std::vector<paddle::ParameterPtr>& parameters = ptr->machine->getParameters();
for (auto& para : parameters) {
para->load(is);

@ -26,7 +26,7 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info operator)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS attribute ddim op_info operator glog)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
@ -42,7 +42,7 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context fill_constant_op)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog)

@ -315,6 +315,7 @@ static void CreateGradVarInBlock(
return false; /* not break */
});
if (need_infer_shape) {
ops[op_index]->InferVarType(block_desc);
ops[op_index]->InferShape(*block_desc);
}
}
@ -452,11 +453,16 @@ ParamGradInfoMap AppendBackward(
std::transform(target_shape_desc.begin(), target_shape_desc.end(),
std::back_inserter(target_shape),
[](int64_t dim) { return static_cast<int>(dim); });
VLOG(3) << "backward from loss=" << target.Name()
<< " data_type=" << target.GetDataType();
std::unique_ptr<OpDescBind> fill_one_op(
new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}},
{{"shape", target_shape},
{"value", static_cast<float>(1.0)},
{"data_type", framework::DataType::FP32}}));
{"data_type", target.GetDataType()}}));
// infer var type of fill_one_op
fill_one_op->InferVarType(root_block);
root_block->AppendAllocatedOp(std::move(fill_one_op));
size_t forward_op_num = root_block->OpSize();
size_t forward_block_num = program_desc.Size();
@ -475,8 +481,7 @@ ParamGradInfoMap AppendBackward(
std::unordered_map<std::string, GradVarInfo> retv;
auto var = root_block->Var(fill_one_op_out);
// FIXME(qiao) infer the data type
var->SetDataType(framework::DataType::FP32);
var->SetDataType(target.GetDataType());
var->SetShape(target.Shape());
auto& target_grad = retv[target.Name()];
target_grad.name_ = fill_one_op_out;

@ -21,6 +21,8 @@
#include "paddle/framework/var_desc.h"
#include "paddle/operators/net_op.h"
USE_OP(fill_constant);
namespace paddle {
namespace framework {

@ -120,6 +120,17 @@ BlockDesc *BlockDescBind::Proto() {
Flush();
return desc_;
}
BlockDescBind::BlockDescBind(ProgramDescBind *prog, BlockDesc *desc)
: prog_(prog), desc_(desc), need_update_(false) {
for (const VarDesc &var_desc : desc_->vars()) {
vars_[var_desc.name()].reset(new VarDescBind(var_desc));
}
for (const OpDesc &op_desc : desc_->ops()) {
ops_.emplace_back(new OpDescBind(op_desc, prog));
}
}
BlockDescBind::BlockDescBind(const BlockDescBind &other, BlockDesc *desc,
ProgramDescBind *prog)
: prog_(prog), desc_(desc) {

@ -36,8 +36,7 @@ class ProgramDescBind;
class BlockDescBind {
public:
BlockDescBind(ProgramDescBind *prog, BlockDesc *desc)
: prog_(prog), desc_(desc), need_update_(false) {}
BlockDescBind(ProgramDescBind *prog, BlockDesc *desc);
BlockDescBind(const BlockDescBind &other, BlockDesc *desc,
ProgramDescBind *prog);

@ -195,6 +195,14 @@ std::vector<int64_t> vectorize(const DDim& ddim) {
return result;
}
// NOTE: framework::vectorize converts to type int64_t
// which does not fit cudnn inputs.
std::vector<int> vectorize2int(const DDim& ddim) {
std::vector<int64_t> temp = vectorize(ddim);
std::vector<int> result(temp.begin(), temp.end());
return result;
}
struct ProductVisitor : public boost::static_visitor<int64_t> {
template <int D>
int64_t operator()(const Dim<D>& dim) {

@ -93,6 +93,7 @@ int64_t get(const DDim& dim, int idx);
void set(DDim& dim, int idx, int val);
std::vector<int64_t> vectorize(const DDim& ddim);
std::vector<int> vectorize2int(const DDim& ddim);
int64_t product(const DDim& ddim);

@ -28,7 +28,8 @@ enum OpInfoFillType {
kOperator = 0,
kOpProtoAndCheckerMaker = 1,
kGradOpDescMaker = 2,
kVarTypeInference = 3
kVarTypeInference = 3,
kShapeInference = 4
};
template <typename T>
@ -42,7 +43,10 @@ struct OpInfoFillTypeID {
? kGradOpDescMaker
: (std::is_base_of<VarTypeInference, T>::value
? kVarTypeInference
: static_cast<OpInfoFillType>(-1))));
: (std::is_base_of<InferShapeBase, T>::value
? kShapeInference
: static_cast<OpInfoFillType>(
-1)))));
}
};
@ -121,6 +125,16 @@ struct OpInfoFiller<T, kVarTypeInference> {
}
};
template <typename T>
struct OpInfoFiller<T, kShapeInference> {
void operator()(const char* op_type, OpInfo* info) const {
info->infer_shape_ = [](InferShapeContext* ctx) {
T inference;
inference(ctx);
};
}
};
} // namespace details
} // namespace framework

@ -20,6 +20,7 @@ limitations under the License. */
#include <set>
#include <vector>
#include "paddle/framework/feed_fetch_type.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/scope.h"
@ -56,6 +57,22 @@ Executor::~Executor() {
}
}
static void CreateTensor(Variable* var, VarDesc::VarType var_type) {
if (var_type == VarDesc::LOD_TENSOR) {
var->GetMutable<LoDTensor>();
} else if (var_type == VarDesc::SELECTED_ROWS) {
var->GetMutable<SelectedRows>();
} else if (var_type == VarDesc::FEED_MINIBATCH) {
var->GetMutable<FeedFetchList>();
} else if (var_type == VarDesc::FETCH_LIST) {
var->GetMutable<FeedFetchList>();
} else {
PADDLE_THROW(
"Variable type must be "
"LoDTensor/SelectedRows/FEED_MINIBATCH/FETCH_LIST.");
}
}
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
// TODO(tonyyang-svail):
// - only runs on the first device (i.e. no interdevice communication)
@ -69,10 +86,12 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
for (auto& var : block.vars()) {
if (var.persistable()) {
auto* ptr = scope->Var(var.name());
CreateTensor(ptr, var.type());
VLOG(3) << "Create Variable " << var.name()
<< " global, which pointer is " << ptr;
} else {
auto* ptr = local_scope.Var(var.name());
CreateTensor(ptr, var.type());
VLOG(3) << "Create Variable " << var.name()
<< " locally, which pointer is " << ptr;
}

@ -14,9 +14,13 @@ limitations under the License. */
#include "paddle/framework/op_desc.h"
#include <functional>
#include <mutex>
#include <unordered_map>
#include "paddle/framework/block_desc.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/program_desc.h"
#include "glog/logging.h"
namespace paddle {
namespace framework {
@ -24,16 +28,47 @@ namespace framework {
OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs) {
op_desc_.set_type(type);
desc_.set_type(type);
inputs_ = inputs;
outputs_ = outputs;
attrs_ = attrs;
need_update_ = true;
}
OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog)
: desc_(desc), need_update_(false) {
// restore inputs_
int input_size = desc_.inputs_size();
for (int i = 0; i < input_size; ++i) {
const OpDesc::Var &var = desc_.inputs(i);
std::vector<std::string> &args = inputs_[var.parameter()];
int argu_size = var.arguments_size();
args.reserve(argu_size);
for (int j = 0; j < argu_size; ++j) {
args.push_back(var.arguments(j));
}
}
// restore outputs_
int output_size = desc_.outputs_size();
for (int i = 0; i < output_size; ++i) {
const OpDesc::Var &var = desc_.outputs(i);
std::vector<std::string> &args = outputs_[var.parameter()];
int argu_size = var.arguments_size();
args.reserve(argu_size);
for (int j = 0; j < argu_size; ++j) {
args.push_back(var.arguments(j));
}
}
// restore attrs_
for (const OpDesc::Attr &attr : desc_.attrs()) {
std::string attr_name = attr.name();
attrs_[attr_name] = GetAttrValue(attr, prog->Proto());
}
}
OpDesc *OpDescBind::Proto() {
Flush();
return &op_desc_;
return &desc_;
}
const std::vector<std::string> &OpDescBind::Input(
@ -167,23 +202,23 @@ struct SetAttrDescVisitor : public boost::static_visitor<void> {
void OpDescBind::Flush() {
if (need_update_) {
this->op_desc_.mutable_inputs()->Clear();
this->desc_.mutable_inputs()->Clear();
for (auto &ipt : inputs_) {
auto *input = op_desc_.add_inputs();
auto *input = desc_.add_inputs();
input->set_parameter(ipt.first);
VectorToRepeated(ipt.second, input->mutable_arguments());
}
this->op_desc_.mutable_outputs()->Clear();
this->desc_.mutable_outputs()->Clear();
for (auto &opt : outputs_) {
auto *output = op_desc_.add_outputs();
auto *output = desc_.add_outputs();
output->set_parameter(opt.first);
VectorToRepeated(opt.second, output->mutable_arguments());
}
this->op_desc_.mutable_attrs()->Clear();
this->desc_.mutable_attrs()->Clear();
for (auto &attr : attrs_) {
auto *attr_desc = op_desc_.add_attrs();
auto *attr_desc = desc_.add_attrs();
attr_desc->set_name(attr.first);
attr_desc->set_type(
static_cast<framework::AttrType>(attr.second.which() - 1));
@ -195,26 +230,26 @@ void OpDescBind::Flush() {
}
}
using InferShapeFuncMap =
std::unordered_map<std::string /*op_type*/,
std::function<void(InferShapeContext *)>>;
static InferShapeFuncMap &InferShapeFuncs() {
static InferShapeFuncMap *g_map = nullptr;
if (g_map == nullptr) {
g_map = new InferShapeFuncMap();
auto &info_map = OpInfoMap::Instance();
// all registered kernels
for (auto &pair : OperatorWithKernel::AllOpKernels()) {
auto &info = info_map.Get(pair.first);
// use empty type here to avoid runtime checks.
static std::once_flag init_infer_shape_funcs;
static void InitInferShapeFuncs() {
std::call_once(init_infer_shape_funcs, [] {
auto &map = OpInfoMap::Instance();
auto &info_map = *map.mutable_map();
for (auto &kern_pair : OperatorWithKernel::AllOpKernels()) {
auto op_type = kern_pair.first;
auto &op_info = info_map.at(op_type);
auto op =
static_cast<OperatorWithKernel *>(info.Creator()("", {}, {}, {}));
g_map->insert(
{pair.first, [op](InferShapeContext *ctx) { op->InferShape(ctx); }});
static_cast<OperatorWithKernel *>(op_info.Creator()("", {}, {}, {}));
if (op_info.infer_shape_) { // infer_shape has been registered.
continue;
}
op_info.infer_shape_ = [op](InferShapeContext *ctx) {
op->InferShape(ctx);
};
}
}
return *g_map;
});
}
void OpDescBind::CheckAttrs() {
@ -230,13 +265,13 @@ void OpDescBind::CheckAttrs() {
}
void OpDescBind::InferShape(const BlockDescBind &block) const {
auto &funcs = InferShapeFuncs();
auto it = funcs.find(this->Type());
if (it == funcs.end()) {
PADDLE_THROW("Operator %s has not been registered", this->Type());
}
VLOG(3) << "CompileTime infer shape on " << Type();
InitInferShapeFuncs();
auto &infer_shape = OpInfoMap::Instance().Get(this->Type()).infer_shape_;
PADDLE_ENFORCE(static_cast<bool>(infer_shape),
"%s's infer_shape has not been registered", this->Type());
CompileTimeInferShapeContext ctx(*this, block);
it->second(&ctx);
infer_shape(&ctx);
}
void OpDescBind::InferVarType(BlockDescBind *block) const {

@ -24,6 +24,7 @@ namespace paddle {
namespace framework {
class BlockDescBind;
class ProgramDescBind;
class OpDescBind {
public:
@ -32,11 +33,13 @@ class OpDescBind {
OpDescBind(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs);
OpDescBind(const OpDesc &desc, ProgramDescBind *prog);
OpDesc *Proto();
std::string Type() const { return op_desc_.type(); }
std::string Type() const { return desc_.type(); }
void SetType(const std::string &type) { op_desc_.set_type(type); }
void SetType(const std::string &type) { desc_.set_type(type); }
const std::vector<std::string> &Input(const std::string &name) const;
@ -117,7 +120,7 @@ class OpDescBind {
return ret_val;
}
OpDesc op_desc_;
OpDesc desc_;
VariableNameMap inputs_;
VariableNameMap outputs_;
AttributeMap attrs_;

@ -25,12 +25,19 @@
namespace paddle {
namespace framework {
class InferShapeBase {
public:
virtual ~InferShapeBase() = default;
virtual void operator()(InferShapeContext*) const = 0;
};
struct OpInfo {
OpCreator creator_;
GradOpMakerFN grad_op_maker_;
OpProto* proto_{nullptr};
OpAttrChecker* checker_{nullptr};
InferVarTypeFN infer_var_type_;
InferShapeFN infer_shape_;
bool HasOpProtoAndChecker() const {
return proto_ != nullptr && checker_ != nullptr;
@ -87,13 +94,13 @@ class OpInfoMap {
}
}
const std::unordered_map<std::string, const OpInfo>& map() const {
return map_;
}
const std::unordered_map<std::string, OpInfo>& map() const { return map_; }
std::unordered_map<std::string, OpInfo>* mutable_map() { return &map_; }
private:
OpInfoMap() = default;
std::unordered_map<std::string, const OpInfo> map_;
std::unordered_map<std::string, OpInfo> map_;
DISABLE_COPY_AND_ASSIGN(OpInfoMap);
};

@ -33,24 +33,6 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
}
#endif
const Tensor* GetTensorFromVar(const Variable* var) {
if (var->IsType<LoDTensor>()) {
return &var->Get<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor.");
return &var->Get<Tensor>();
}
Tensor* GetTensorFromVar(Variable* var) {
if (var->IsType<LoDTensor>()) {
return var->GetMutable<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor.");
return var->GetMutable<Tensor>();
}
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
@ -204,6 +186,30 @@ void OperatorBase::GenerateTemporaryNames() {
}
}
static const Tensor* GetTensorFromVar(const Variable* var) {
const Tensor* t = nullptr;
if (var->IsType<LoDTensor>()) {
t = &(var->Get<LoDTensor>());
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
return t;
}
static Tensor* GetMutableTensorFromVar(Variable* var) {
Tensor* t = nullptr;
if (var->IsType<LoDTensor>()) {
t = var->GetMutable<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = var->GetMutable<SelectedRows>()->mutable_value();
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
return t;
}
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
auto* var = InputVar(name);
@ -227,7 +233,7 @@ const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
auto var = OutputVar(name);
return var == nullptr ? nullptr : var->GetMutable<LoDTensor>();
return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
}
template <>
@ -240,7 +246,7 @@ std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
[&](const std::string& sub_name) {
auto var = scope_.FindVar(sub_name);
return var == nullptr ? nullptr
: var->GetMutable<LoDTensor>();
: GetMutableTensorFromVar(var);
});
return res;
}

@ -28,6 +28,7 @@ limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/op_info.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/shape_inference.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
@ -60,9 +61,6 @@ inline std::string GradVarName(const std::string& var_name) {
class OperatorBase;
class ExecutionContext;
extern const Tensor* GetTensorFromVar(const Variable* var);
extern Tensor* GetTensorFromVar(Variable* var);
/**
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
@ -414,7 +412,9 @@ class CompileTimeInferShapeContext : public InferShapeContext {
private:
DDim GetDim(const std::string& name) const override {
return framework::make_ddim(block_.FindVarRecursive(name)->Shape());
auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
return framework::make_ddim(var->Shape());
}
void SetDim(const std::string& name, const DDim& dim) override {
@ -511,28 +511,26 @@ class RuntimeInferShapeContext : public InferShapeContext {
}
private:
template <bool Allocate>
Tensor* GetTensor(const std::string& name) const {
Tensor* t = nullptr;
auto* var = scope_.FindVar(name);
if (!var->IsType<LoDTensor>() && !var->IsType<Tensor>()) {
if (Allocate) {
t = var->GetMutable<LoDTensor>();
} else {
PADDLE_THROW("Variable(%s) should be tensor", name);
}
DDim GetDim(const std::string& name) const override {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().dims();
} else if (var->IsType<SelectedRows>()) {
return var->Get<SelectedRows>().GetCompleteDims();
} else {
t = GetTensorFromVar(scope_.FindVar(name));
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
return t;
}
DDim GetDim(const std::string& name) const override {
return GetTensor<false>(name)->dims();
}
void SetDim(const std::string& name, const DDim& dim) override {
GetTensor<true>(name)->Resize(dim);
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) {
var->GetMutable<LoDTensor>()->Resize(dim);
} else if (var->IsType<SelectedRows>()) {
var->GetMutable<SelectedRows>()->set_height(dim[0]);
} else {
PADDLE_THROW("Variable type must be LoDTensor/SelectedRows.");
}
}
const OperatorBase& op_;
@ -638,7 +636,9 @@ class OperatorWithKernel : public OperatorBase {
});
}
virtual void InferShape(InferShapeContext* ctx) const = 0;
virtual void InferShape(InferShapeContext* ctx) const {
OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
}
protected:
// indicate kernel DataType by input data. Defaultly all input data must be
@ -655,11 +655,14 @@ class OperatorWithKernel : public OperatorBase {
t = &var->Get<Tensor>();
} else if (var->IsType<LoDTensor>()) {
t = &var->Get<LoDTensor>();
} else if (var->IsType<SelectedRows>()) {
t = &(var->Get<SelectedRows>().value());
}
if (t != nullptr) {
int tmp = static_cast<int>(ToDataType(t->type()));
VLOG(3) << "Input " << ipt_name << " with data_type " << tmp;
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op must be same.");
"DataType of Paddle Op %s must be same.", Type());
data_type = tmp;
}
}

@ -237,12 +237,12 @@ TEST(OpKernel, multi_inputs) {
paddle::platform::CPUDeviceContext cpu_device_context;
paddle::framework::Scope scope;
scope.Var("x0")->GetMutable<Tensor>();
scope.Var("x1")->GetMutable<Tensor>();
scope.Var("x2")->GetMutable<Tensor>();
scope.Var("k0")->GetMutable<Tensor>();
scope.Var("y0")->GetMutable<Tensor>();
scope.Var("y1")->GetMutable<Tensor>();
scope.Var("x0")->GetMutable<LoDTensor>();
scope.Var("x1")->GetMutable<LoDTensor>();
scope.Var("x2")->GetMutable<LoDTensor>();
scope.Var("k0")->GetMutable<LoDTensor>();
scope.Var("y0")->GetMutable<LoDTensor>();
scope.Var("y1")->GetMutable<LoDTensor>();
auto op = paddle::framework::OpRegistry::CreateOp(op_desc, nullptr);
op->Run(scope, cpu_device_context);

@ -19,9 +19,9 @@ namespace paddle {
namespace framework {
BlockDescBind *ProgramDescBind::AppendBlock(const BlockDescBind &parent) {
auto *b = prog_.add_blocks();
auto *b = desc_.add_blocks();
b->set_parent_idx(parent.ID());
b->set_idx(prog_.blocks_size() - 1);
b->set_idx(desc_.blocks_size() - 1);
blocks_.emplace_back(new BlockDescBind(this, b));
return blocks_.back().get();
}
@ -30,23 +30,32 @@ ProgramDesc *ProgramDescBind::Proto() {
for (auto &block : blocks_) {
block->Flush();
}
return &prog_;
return &desc_;
}
ProgramDescBind::ProgramDescBind() {
auto *block = prog_.mutable_blocks()->Add();
auto *block = desc_.mutable_blocks()->Add();
block->set_idx(kRootBlockIndex);
block->set_parent_idx(kNoneBlockIndex);
blocks_.emplace_back(new BlockDescBind(this, block));
}
ProgramDescBind::ProgramDescBind(const ProgramDescBind &o) {
prog_ = o.prog_;
desc_ = o.desc_;
for (int i = 0; i < prog_.blocks_size(); ++i) {
auto *block = prog_.mutable_blocks(i);
for (int i = 0; i < desc_.blocks_size(); ++i) {
auto *block = desc_.mutable_blocks(i);
blocks_.emplace_back(new BlockDescBind(*o.blocks_[i], block, this));
}
}
ProgramDescBind::ProgramDescBind(const std::string &binary_str) {
PADDLE_ENFORCE(desc_.ParseFromString(binary_str),
"Fail to parse program_desc from binary string.");
for (auto &block_desc : *desc_.mutable_blocks()) {
blocks_.emplace_back(new BlockDescBind(this, &block_desc));
}
}
} // namespace framework
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save