|
|
|
@ -22,24 +22,87 @@ class TestElementwisePowOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2, 3]).astype("float32")
|
|
|
|
|
}
|
|
|
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
|
self.check_grad(['X', 'Y'], 'Out')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestElementwisePowOp_scalar(TestElementwisePowOp):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.rand(2, 3, 4).astype('float32'),
|
|
|
|
|
'Y': np.random.rand(1).astype('float32')
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [3, 3, 4]).astype(np.float32),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [1]).astype(np.float32)
|
|
|
|
|
}
|
|
|
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestElementwisePowOp_tensor(TestElementwisePowOp):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [32]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [32]).astype("float32")
|
|
|
|
|
}
|
|
|
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_0(TestElementwisePowOp):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [4]).astype("float32")
|
|
|
|
|
}
|
|
|
|
|
self.outputs = {'Out': np.power(self.inputs['X'], self.inputs['Y'])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_1(TestElementwisePowOp):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [3]).astype("float32")
|
|
|
|
|
}
|
|
|
|
|
self.attrs = {'axis': 1}
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(3, 1))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_2(TestElementwisePowOp):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [2]).astype("float32")
|
|
|
|
|
}
|
|
|
|
|
self.attrs = {'axis': 0}
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestElementwisePowOp_broadcast_3(TestElementwisePowOp):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "elementwise_pow"
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float32"),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1, [3, 4]).astype("float32")
|
|
|
|
|
}
|
|
|
|
|
self.attrs = {'axis': 1}
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'Out': np.power(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4,
|
|
|
|
|
1))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|