|
|
|
@ -27,6 +27,45 @@ from paddle.fluid.op import Operator
|
|
|
|
|
from paddle.fluid.framework import Program, program_guard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def nce(input, weight, bias, sample_weight, labels, num_classes,
|
|
|
|
|
num_sample_class):
|
|
|
|
|
samples = []
|
|
|
|
|
sample_labels = []
|
|
|
|
|
batch_size = input.shape[0]
|
|
|
|
|
num_true_class = labels.shape[1]
|
|
|
|
|
for i in range(batch_size):
|
|
|
|
|
w = 1 if sample_weight is None else sample_weight[i]
|
|
|
|
|
for label in labels[i]:
|
|
|
|
|
samples.append((i, label, True, w))
|
|
|
|
|
sample_labels.append(label)
|
|
|
|
|
for num in range(num_sample_class):
|
|
|
|
|
samples.append((i, num, False, w))
|
|
|
|
|
sample_labels.append(num)
|
|
|
|
|
# forward bias
|
|
|
|
|
sample_out = np.zeros(len(samples)).astype(np.float32)
|
|
|
|
|
if bias is not None:
|
|
|
|
|
for i in range(len(samples)):
|
|
|
|
|
sample_out[i] = bias[samples[i][1]]
|
|
|
|
|
# forward weight
|
|
|
|
|
for i in range(len(samples)):
|
|
|
|
|
sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
|
|
|
|
|
|
|
|
|
|
# forward activation
|
|
|
|
|
sample_out = 1.0 / (1.0 + np.exp(-sample_out))
|
|
|
|
|
# forward cost
|
|
|
|
|
out = np.zeros(batch_size).astype(np.float32)
|
|
|
|
|
b = 1.0 / num_classes * num_sample_class
|
|
|
|
|
|
|
|
|
|
for i in range(len(samples)):
|
|
|
|
|
o = sample_out[i]
|
|
|
|
|
cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
|
|
|
|
|
out[samples[i][0]] += cost * samples[i][3]
|
|
|
|
|
return (out[:, np.newaxis], np.array(sample_out).reshape(
|
|
|
|
|
batch_size, num_sample_class + num_true_class),
|
|
|
|
|
np.array(sample_labels).reshape(batch_size,
|
|
|
|
|
num_sample_class + num_true_class))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_pserver(pserver_id, use_cuda, sync_mode):
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
program = Program()
|
|
|
|
@ -94,11 +133,11 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with program_guard(program, startup_program=Program()):
|
|
|
|
|
x = scope.var('Input').get_tensor()
|
|
|
|
|
x_array = np.random.random((4, 8)).astype("float32") * 2
|
|
|
|
|
x_array = np.random.random((4, 8)).astype("float32")
|
|
|
|
|
x.set(x_array, place)
|
|
|
|
|
# create and initialize Param Variable
|
|
|
|
|
param = scope.var('Weight').get_tensor()
|
|
|
|
|
param_array = np.zeros((5, 8)).astype("float32") * 2
|
|
|
|
|
param_array = np.zeros((5, 8)).astype("float32")
|
|
|
|
|
param.set(param_array, place)
|
|
|
|
|
|
|
|
|
|
bias = scope.var('Bias').get_tensor()
|
|
|
|
@ -110,7 +149,7 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
sample_w.set(sample_weight, place)
|
|
|
|
|
|
|
|
|
|
label = scope.var('Label').get_tensor()
|
|
|
|
|
label_array = np.array([0, 1, 4, 5])
|
|
|
|
|
label_array = np.array([[0], [1], [4], [3]])
|
|
|
|
|
label.set(label_array, place)
|
|
|
|
|
|
|
|
|
|
cost = scope.var('Cost').get_tensor()
|
|
|
|
@ -122,7 +161,7 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
sample_l.set(sample_l_w, place)
|
|
|
|
|
|
|
|
|
|
sample_la = scope.var('SampleLabels').get_tensor()
|
|
|
|
|
sample_la_w = np.zeros((4, 3)).astype("float32")
|
|
|
|
|
sample_la_w = np.zeros((4, 3)).astype("int")
|
|
|
|
|
sample_la.set(sample_la_w, place)
|
|
|
|
|
|
|
|
|
|
emaps = ['127.0.0.1:' + str(port0), '127.0.0.1:' + str(port1)]
|
|
|
|
@ -139,11 +178,12 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
Cost='Cost',
|
|
|
|
|
SampleLogits='SampleLogits',
|
|
|
|
|
SampleLabels='SampleLabels',
|
|
|
|
|
SampleWeight='SampleWeight',
|
|
|
|
|
num_total_classes=5,
|
|
|
|
|
num_neg_samples=2,
|
|
|
|
|
custom_neg_classes=list(range(2)),
|
|
|
|
|
sampler=0,
|
|
|
|
|
seed=1,
|
|
|
|
|
seed=0,
|
|
|
|
|
is_sparse=True,
|
|
|
|
|
remote_prefetch=True,
|
|
|
|
|
epmap=emaps,
|
|
|
|
@ -153,9 +193,21 @@ class TestListenAndServOp(unittest.TestCase):
|
|
|
|
|
nce_op.run(scope, place)
|
|
|
|
|
|
|
|
|
|
# get and compare result
|
|
|
|
|
o_cost = np.array(cost_w)
|
|
|
|
|
o_logits = np.array(sample_l)
|
|
|
|
|
o_labels = np.array(sample_la)
|
|
|
|
|
o_cost = np.array(scope.var('Cost').get_tensor())
|
|
|
|
|
o_logits = np.array(scope.var('SampleLogits').get_tensor())
|
|
|
|
|
o_labels = np.array(scope.var('SampleLabels').get_tensor())
|
|
|
|
|
|
|
|
|
|
param_array = np.ones((5, 8)).astype("float32")
|
|
|
|
|
for i in range(2):
|
|
|
|
|
param_array[i] *= param_array[i] * i + 0 * 10 + 1
|
|
|
|
|
for i in range(2, 5):
|
|
|
|
|
param_array[i] *= param_array[i] * i + 1 * 10 + 1
|
|
|
|
|
out = nce(x_array, param_array, bias_array, sample_weight,
|
|
|
|
|
label_array, 5, 2)
|
|
|
|
|
|
|
|
|
|
self.assertAlmostEqual(o_cost.all(), out[0].all(), delta=1e-6)
|
|
|
|
|
self.assertAlmostEqual(o_logits.all(), out[1].all(), delta=1e-6)
|
|
|
|
|
self.assertAlmostEqual(o_labels.all(), out[2].all(), delta=1e-6)
|
|
|
|
|
|
|
|
|
|
def test_nce_op_remote(self):
|
|
|
|
|
os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1"
|
|
|
|
|