parent
830877f59b
commit
e10040ca8a
@ -0,0 +1,177 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "CropOp.h"
|
||||
#include "paddle/math/Vector.h"
|
||||
#include "paddle/function/TensorShape.h"
|
||||
namespace paddle {
|
||||
|
||||
static inline CropConf castToCropConf(const FuncConfig& conf) {
|
||||
return {conf.get<std::vector<uint32_t>>("crop_corner"),
|
||||
conf.get<std::vector<uint32_t>>("crop_shape")};
|
||||
}
|
||||
|
||||
template <>
|
||||
void Crop<DEVICE_TYPE_CPU>(real* outputs,
|
||||
const real* inputs,
|
||||
const TensorShape inShape,
|
||||
const CropConf& crop) {
|
||||
int cCrop = crop.corner[0];
|
||||
int hCrop = crop.corner[1];
|
||||
int wCrop = crop.corner[2];
|
||||
|
||||
int num = inShape[0];
|
||||
int inC = inShape[1];
|
||||
int inH = inShape[2];
|
||||
int inW = inShape[3];
|
||||
|
||||
int outC = crop.shape[0];
|
||||
int outH = crop.shape[1];
|
||||
int outW = crop.shape[2];
|
||||
|
||||
for (int n = 0; n < num; n++) {
|
||||
for (int c = 0; c < outC; c++) {
|
||||
for (int h = 0; h < outH; h++) {
|
||||
int outoff = ((n * outC + c) * outH + h) * outW;
|
||||
int inoff = ((n * inC + c + cCrop) * inH + h + hCrop) * inW + wCrop;
|
||||
memcpy(outputs + outoff, inputs + inoff, outW * sizeof(real));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void CropGrad<DEVICE_TYPE_CPU>(const real* inGrad,
|
||||
real* outGrad,
|
||||
const TensorShape outShape,
|
||||
const CropConf& crop) {
|
||||
int cCrop = crop.corner[0];
|
||||
int hCrop = crop.corner[1];
|
||||
int wCrop = crop.corner[2];
|
||||
|
||||
int num = outShape[0];
|
||||
int outC = outShape[1];
|
||||
int outH = outShape[2];
|
||||
int outW = outShape[3];
|
||||
|
||||
int inC = crop.shape[0];
|
||||
int inH = crop.shape[1];
|
||||
int inW = crop.shape[2];
|
||||
|
||||
for (int n = 0; n < num; n++) {
|
||||
for (int c = 0; c < inC; c++) {
|
||||
for (int h = 0; h < inH; h++) {
|
||||
int outoff = ((n * outC + c + cCrop) * outH + h + hCrop) * outW + wCrop;
|
||||
int inoff = ((n * inC + c) * inH + h) * inW;
|
||||
CpuVector inG = CpuVector(inW, const_cast<real*>(inGrad + inoff));
|
||||
CpuVector outG = CpuVector(inW, outGrad + outoff);
|
||||
outG += inG;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Crop input according to the specify corner and shape.
|
||||
* The input and output is a 4D tensor. In CropFunc, we only
|
||||
* crop the 2nd to 4th dimension.
|
||||
*
|
||||
* Argument in this Function:
|
||||
* \param pad_ A struct object contains the cropping corner and shape.
|
||||
* \param inputs A 4D tensor, only one input.
|
||||
* \param outputs A 4D tensor, the output value after cropping.
|
||||
*
|
||||
* For example,
|
||||
* Input(2,2,2,3) = [
|
||||
* [ [[1,2,3], [3,4,5]],
|
||||
* [[2,3,5], [1,6,7]] ],
|
||||
* [ [[4,3,1], [1,8,7]],
|
||||
* [[3,8,9], [2,3,5]] ]
|
||||
* ] # the input shape is (2,2,2,3)
|
||||
*
|
||||
* pad_: if corner = (0,1,1) and crop_shape = (2,1,2)
|
||||
* Output(2,2,1,2) = [
|
||||
* [ [[4,5]],
|
||||
* [[6,7]] ],
|
||||
* [ [[8,7]],
|
||||
* [[3,5]] ]
|
||||
* ] # the input shape is (2,2,2,3)
|
||||
*/
|
||||
template <DeviceType Device>
|
||||
class CropFunc : public FunctionBase {
|
||||
public:
|
||||
void init(const FuncConfig& config) override {
|
||||
crop_ = castToCropConf(config);
|
||||
}
|
||||
|
||||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||
CHECK_EQ(1UL, inputs.size());
|
||||
CHECK_EQ(1UL, outputs.size());
|
||||
CHECK_EQ(outputs[0].shape()[1], crop_.shape[0]);
|
||||
CHECK_EQ(outputs[0].shape()[2], crop_.shape[1]);
|
||||
CHECK_EQ(outputs[0].shape()[3], crop_.shape[2]);
|
||||
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||
|
||||
TensorShape inShape = inputs[0].shape();
|
||||
|
||||
Crop<Device>(
|
||||
outputs[0].data<real>(), inputs[0].data<real>(), inShape, crop_);
|
||||
}
|
||||
|
||||
private:
|
||||
CropConf crop_;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief The backward propagation of cropping Function.
|
||||
*
|
||||
* Argument in this Function:
|
||||
* \param crop_ The same meaning as it in CropFunc.
|
||||
* \param inputs The gradient with respect to the output value of CropFunc.
|
||||
* \param outputs The gradient with respect to the input value of CropFunc.
|
||||
*/
|
||||
|
||||
template <DeviceType Device>
|
||||
class CropGradFunc : public FunctionBase {
|
||||
public:
|
||||
void init(const FuncConfig& config) override {
|
||||
crop_ = castToCropConf(config);
|
||||
}
|
||||
|
||||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
||||
CHECK_EQ(1UL, inputs.size());
|
||||
CHECK_EQ(1UL, outputs.size());
|
||||
CHECK_EQ(inputs[0].shape()[1], crop_.shape[0]);
|
||||
CHECK_EQ(inputs[0].shape()[2], crop_.shape[1]);
|
||||
CHECK_EQ(inputs[0].shape()[3], crop_.shape[2]);
|
||||
CHECK_EQ(outputs[0].getArgType(), ASSIGN_TO);
|
||||
|
||||
TensorShape outShape = outputs[0].shape();
|
||||
|
||||
CropGrad<Device>(
|
||||
inputs[0].data<real>(), outputs[0].data<real>(), outShape, crop_);
|
||||
}
|
||||
|
||||
private:
|
||||
CropConf crop_;
|
||||
};
|
||||
|
||||
REGISTER_TYPED_FUNC(Crop, CPU, CropFunc);
|
||||
REGISTER_TYPED_FUNC(CropGrad, CPU, CropGradFunc);
|
||||
#ifndef PADDLE_ONLY_CPU
|
||||
REGISTER_TYPED_FUNC(Crop, GPU, CropFunc);
|
||||
REGISTER_TYPED_FUNC(CropGrad, GPU, CropGradFunc);
|
||||
#endif
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,56 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Function.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
struct CropConf {
|
||||
/// The upper left corner of croped result
|
||||
std::vector<uint32_t> corner;
|
||||
/// The shape of croped result
|
||||
std::vector<uint32_t> shape;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief This funtion crops inputs according to the specify start point and
|
||||
*shape.
|
||||
*
|
||||
* \param[out] outputs save results.
|
||||
* \param[in] inputs input data.
|
||||
* \param[in] inShape the shape of input tensor.
|
||||
* \param[in] crop the cropping config
|
||||
*/
|
||||
template <DeviceType Device>
|
||||
void Crop(real* outputs,
|
||||
const real* inputs,
|
||||
const TensorShape inShape,
|
||||
const CropConf& crop);
|
||||
|
||||
/**
|
||||
* \brief Cropping operation backward.
|
||||
*
|
||||
* \param[out] inGrad gradients of previous layer
|
||||
* \param[in] outGrad output gradient
|
||||
* \param[in] inShape the shape of input tensor.
|
||||
* \param[in] crop the cropping config
|
||||
*/
|
||||
template <DeviceType Device>
|
||||
void CropGrad(const real* inGrad,
|
||||
real* outGrad,
|
||||
const TensorShape inShape,
|
||||
const CropConf& crop);
|
||||
} // namespace paddle
|
@ -0,0 +1,109 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "hl_base.h"
|
||||
#include "CropOp.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
__global__ void KeCrop(real* outputs, const real* inputs,
|
||||
int inC, int inH, int inW,
|
||||
int cropC, int cropH, int cropW,
|
||||
int outC, int outH, int outW, int nthreads) {
|
||||
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (idx < nthreads) {
|
||||
const int w = idx % outW;
|
||||
const int h = (idx / outW) % outH;
|
||||
const int c = (idx / outW / outH) % outC;
|
||||
const int n = idx / outW / outH / outC;
|
||||
|
||||
const int off = ((n * inC + c + cropC) * inH + h + cropH) * inW + cropW + w;
|
||||
outputs[idx] = inputs[off];
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void Crop<DEVICE_TYPE_GPU>(real* outputs,
|
||||
const real* inputs,
|
||||
const TensorShape inShape,
|
||||
const CropConf& crop) {
|
||||
int cropC = crop.corner[0];
|
||||
int cropH = crop.corner[1];
|
||||
int cropW = crop.corner[2];
|
||||
|
||||
int num = inShape[0];
|
||||
int inC = inShape[1];
|
||||
int inH = inShape[2];
|
||||
int inW = inShape[3];
|
||||
|
||||
int outC = crop.shape[0];
|
||||
int outH = crop.shape[1];
|
||||
int outW = crop.shape[2];
|
||||
|
||||
size_t nth = num * outC * outH * outW;
|
||||
int blockSize = 1024;
|
||||
int gridSize = (nth + blockSize - 1) / blockSize;
|
||||
|
||||
KeCrop<<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
|
||||
(outputs, inputs, inC, inH, inW, cropC, cropH, cropW,
|
||||
outC, outH, outW, nth);
|
||||
CHECK_SYNC("Crop");
|
||||
}
|
||||
|
||||
__global__ void KeCropDiff(const real* inGrad, real* outGrad,
|
||||
int inC, int inH, int inW,
|
||||
int cropC, int cropH, int cropW,
|
||||
int outC, int outH, int outW, int nthreads) {
|
||||
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (idx < nthreads) {
|
||||
const int w = idx % inW;
|
||||
const int h = (idx / inW) % inH;
|
||||
const int c = (idx / inW / inH) % inC;
|
||||
const int n = idx / inW / inH / inC;
|
||||
|
||||
const int off = ((n * outC + c + cropC) * outH + h + cropH) * outW + cropW + w;
|
||||
|
||||
outGrad[off] += inGrad[idx];
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void CropGrad<DEVICE_TYPE_GPU>(const real* inGrad,
|
||||
real* outGrad,
|
||||
const TensorShape outShape,
|
||||
const CropConf& crop) {
|
||||
int cropC = crop.corner[0];
|
||||
int cropH = crop.corner[1];
|
||||
int cropW = crop.corner[2];
|
||||
|
||||
int num = outShape[0];
|
||||
int outC = outShape[1];
|
||||
int outH = outShape[2];
|
||||
int outW = outShape[3];
|
||||
|
||||
int inC = crop.shape[0];
|
||||
int inH = crop.shape[1];
|
||||
int inW = crop.shape[2];
|
||||
|
||||
size_t nth = num * inC * inH * inW;
|
||||
int blockSize = 1024;
|
||||
int gridSize = (nth + blockSize - 1) / blockSize;
|
||||
|
||||
KeCropDiff <<<gridSize, blockSize, 0, STREAM_DEFAULT>>>
|
||||
(inGrad, outGrad, inC, inH, inW, cropC, cropH, cropW,
|
||||
outC, outH, outW, nth);
|
||||
CHECK_SYNC("CropGrad");
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,47 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "FunctionTest.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
TEST(Crop, real) {
|
||||
for (size_t numSamples : {5, 32}) {
|
||||
for (size_t channels : {5, 5, 32}) {
|
||||
for (size_t imgSizeH : {5, 33, 100}) {
|
||||
for (size_t imgSizeW : {5, 32, 96}) {
|
||||
VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
|
||||
<< " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
|
||||
for (bool test_grad : {false, true}) {
|
||||
FunctionCompare compare(
|
||||
test_grad ? "CropGrad" : "Crop",
|
||||
FuncConfig()
|
||||
.set<std::vector<uint32_t>>("crop_corner", {1, 1, 1})
|
||||
.set<std::vector<uint32_t>>("crop_shape", {2, 3, 3}));
|
||||
TensorShape inDims{numSamples, channels, imgSizeH, imgSizeW};
|
||||
TensorShape outDims{numSamples, 2, 3, 3};
|
||||
compare.addInputs(
|
||||
BufferArg(VALUE_TYPE_FLOAT, test_grad ? outDims : inDims));
|
||||
compare.addOutputs(BufferArg(
|
||||
VALUE_TYPE_FLOAT, test_grad ? inDims : outDims, ASSIGN_TO));
|
||||
compare.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,101 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "CropLayer.h"
|
||||
#include "paddle/utils/Stat.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(crop, CropLayer);
|
||||
|
||||
bool CropLayer::init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) {
|
||||
/* Initialize the basic parent class */
|
||||
Layer::init(layerMap, parameterMap);
|
||||
|
||||
auto& crop_conf = config_.inputs(0).crop_conf();
|
||||
auto& img_conf = crop_conf.image_conf();
|
||||
CHECK_EQ(config_.inputs_size(), 1);
|
||||
inDims_ = TensorShape(
|
||||
{0,
|
||||
img_conf.channels(),
|
||||
img_conf.has_img_size_y() ? img_conf.img_size_y() : img_conf.img_size(),
|
||||
img_conf.img_size()});
|
||||
|
||||
crop_corner_ = {crop_conf.crop_corner(0),
|
||||
crop_conf.crop_corner(1),
|
||||
crop_conf.crop_corner(2)};
|
||||
crop_shape_ = {crop_conf.crop_shape(0),
|
||||
crop_conf.crop_shape(1),
|
||||
crop_conf.crop_shape(2)};
|
||||
|
||||
outDims_ = TensorShape(4);
|
||||
setOutDims(0);
|
||||
|
||||
createFunction(forward_,
|
||||
"Crop",
|
||||
FuncConfig()
|
||||
.set("crop_corner", crop_corner_)
|
||||
.set("crop_shape", crop_shape_));
|
||||
createFunction(backward_,
|
||||
"CropGrad",
|
||||
FuncConfig()
|
||||
.set("crop_corner", crop_corner_)
|
||||
.set("crop_shape", crop_shape_));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void CropLayer::setOutDims(const size_t batchSize) {
|
||||
outDims_.reshape({batchSize, crop_shape_[0], crop_shape_[1], crop_shape_[2]});
|
||||
}
|
||||
|
||||
void CropLayer::setTensorDim(const size_t batchSize) {
|
||||
CHECK_EQ(static_cast<int>(inputLayers_.size()), 1);
|
||||
inDims_.setDim(0, batchSize);
|
||||
int h = inputLayers_[0]->getOutput().getFrameHeight();
|
||||
if (h != 0) inDims_.setDim(2, h);
|
||||
int w = inputLayers_[0]->getOutput().getFrameWidth();
|
||||
if (w != 0) inDims_.setDim(3, w);
|
||||
setOutDims(batchSize);
|
||||
}
|
||||
|
||||
void CropLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
MatrixPtr input = inputLayers_[0]->getOutputValue();
|
||||
size_t batchSize = input->getHeight();
|
||||
setTensorDim(batchSize);
|
||||
int size = outDims_[1] * outDims_[2] * outDims_[3];
|
||||
resetOutput(batchSize, size);
|
||||
MatrixPtr outV = getOutputValue();
|
||||
REGISTER_TIMER_INFO("CropForward", getName().c_str());
|
||||
|
||||
BufferArgs inputs;
|
||||
BufferArgs outputs;
|
||||
inputs.addArg(*getInputValue(0), inDims_);
|
||||
outputs.addArg(*getOutputValue(), outDims_, ASSIGN_TO);
|
||||
forward_[0]->calc(inputs, outputs);
|
||||
}
|
||||
|
||||
void CropLayer::backward(const UpdateCallback& callback) {
|
||||
(void)callback;
|
||||
REGISTER_TIMER_INFO("CropBackward", getName().c_str());
|
||||
|
||||
BufferArgs inputs;
|
||||
BufferArgs outputs;
|
||||
inputs.addArg(*getOutputGrad(), outDims_);
|
||||
outputs.addArg(*getInputGrad(0), inDims_, ADD_TO);
|
||||
backward_[0]->calc(inputs, outputs);
|
||||
}
|
||||
} // namespace paddle
|
@ -0,0 +1,46 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Layer.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* \brief This layer crop inputs according to the specify corner and shape.
|
||||
* The input and output is a 4D tensor. Cropping from the 2nd to
|
||||
* the 4th dimenstion.
|
||||
*/
|
||||
class CropLayer : public Layer {
|
||||
public:
|
||||
explicit CropLayer(const LayerConfig& config) : Layer(config) {}
|
||||
|
||||
~CropLayer() {}
|
||||
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
void forward(PassType passType) override;
|
||||
void backward(const UpdateCallback& callback = nullptr) override;
|
||||
|
||||
protected:
|
||||
void setOutDims(const size_t batchSize);
|
||||
void setTensorDim(const size_t batchSize);
|
||||
|
||||
std::vector<uint32_t> crop_corner_;
|
||||
std::vector<uint32_t> crop_shape_;
|
||||
TensorShape inDims_;
|
||||
TensorShape outDims_;
|
||||
};
|
||||
} // namespace paddle
|
Loading…
Reference in new issue