Add pad2d op. (#12950)
* Add pad2d op. * Add unitest and python api. * Fix cuda op kernel. * Fix python api. * Fix python api. * Update API.spec. * Fix python apifix-deadlinks-in-readme
parent
c709a04ae2
commit
e10aa80f03
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,102 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestPad2dOp(OpTest):
|
||||
def setUp(self):
|
||||
self.pad_value = 0.0
|
||||
self.initTestCase()
|
||||
self.op_type = "pad2d"
|
||||
self.inputs = {'X': np.random.random(self.shape).astype("float32"), }
|
||||
self.attrs = {}
|
||||
self.attrs['paddings'] = np.array(self.paddings).flatten()
|
||||
self.attrs['pad_value'] = self.pad_value
|
||||
self.attrs['mode'] = self.mode
|
||||
self.attrs['data_format'] = self.data_format
|
||||
if self.data_format == "NCHW":
|
||||
paddings = [(0, 0), (0, 0), (self.paddings[0], self.paddings[1]),
|
||||
(self.paddings[2], self.paddings[3])]
|
||||
else:
|
||||
paddings = [(0, 0), (self.paddings[0], self.paddings[1]),
|
||||
(self.paddings[2], self.paddings[3]), (0, 0)]
|
||||
if self.mode == "constant":
|
||||
out = np.pad(self.inputs['X'],
|
||||
paddings,
|
||||
mode=self.mode,
|
||||
constant_values=self.pad_value)
|
||||
else:
|
||||
out = np.pad(self.inputs['X'], paddings, mode=self.mode)
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X'], 'Out', max_relative_error=0.006)
|
||||
|
||||
def initTestCase(self):
|
||||
self.shape = (2, 3, 4, 4)
|
||||
self.paddings = [0, 1, 2, 3]
|
||||
self.mode = "constant"
|
||||
self.data_format = "NCHW"
|
||||
self.pad_value = 0.0
|
||||
|
||||
|
||||
class TestCase1(TestPad2dOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (2, 3, 4, 4)
|
||||
self.paddings = [0, 1, 2, 3]
|
||||
self.mode = "reflect"
|
||||
self.data_format = "NCHW"
|
||||
|
||||
|
||||
class TestCase2(TestPad2dOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (2, 3, 4, 4)
|
||||
self.paddings = [0, 1, 2, 3]
|
||||
self.mode = "edge"
|
||||
self.data_format = "NCHW"
|
||||
|
||||
|
||||
class TestCase3(TestPad2dOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (2, 4, 4, 2)
|
||||
self.paddings = [0, 1, 2, 3]
|
||||
self.mode = "reflect"
|
||||
self.data_format = "NHWC"
|
||||
|
||||
|
||||
class TestCase4(TestPad2dOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (2, 4, 4, 2)
|
||||
self.paddings = [0, 1, 2, 3]
|
||||
self.mode = "edge"
|
||||
self.data_format = "NHWC"
|
||||
|
||||
|
||||
class TestCase5(TestPad2dOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (2, 4, 4, 2)
|
||||
self.paddings = [0, 1, 2, 3]
|
||||
self.mode = "constant"
|
||||
self.pad_value = 1.2
|
||||
self.data_format = "NHWC"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue