Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into op_transpose
commit
e129dcfb74
@ -0,0 +1,106 @@
|
||||
# Design Doc: Operation Graph Based Parameter Server
|
||||
|
||||
## Abstract
|
||||
|
||||
We propose an approach to implement the parameter server. In this
|
||||
approach, there is no fundamental difference between the trainer and
|
||||
the parameter server: they both run subgraphs, but subgraphs of
|
||||
different purposes.
|
||||
|
||||
## Background
|
||||
|
||||
The previous implementations of the parameter server does not run a
|
||||
subgraph. parameter initialization, optimizer computation, network
|
||||
communication and checkpointing are implemented twice on both the
|
||||
trainer and the parameter server.
|
||||
|
||||
It would be great if we can write code once and use them on both the
|
||||
trainer and the parameter server: reduces code duplication and
|
||||
improves extensibility. Given that after the current refactor, we are
|
||||
representing everything as a computing graph on the
|
||||
trainer. Representing everything as a computing graph on the parameter
|
||||
server becomes a natural extension.
|
||||
|
||||
## Design
|
||||
|
||||
### Graph Converter
|
||||
|
||||
The *graph converter* converts the user-defined operation (OP) graph
|
||||
into subgraphs to be scheduled on different nodes with the following
|
||||
steps:
|
||||
|
||||
1. OP placement: the OPs will be placed on different nodes according
|
||||
to heuristic that minimizes estimated total computation
|
||||
time. Currently we will use a simple heuristic that puts parameter
|
||||
varable on parameter server workers and everything else on trainer
|
||||
workers.
|
||||
|
||||
1. Add communication OPs to enable the communication between nodes.
|
||||
|
||||
We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*.
|
||||
|
||||
Below is an example of converting the user defined graph to the
|
||||
subgraphs for the trainer and the parameter server:
|
||||
|
||||
<img src="src/local-graph.png" width="300"/>
|
||||
|
||||
After converting:
|
||||
|
||||
<img src="src/dist-graph.png" width="700"/>
|
||||
|
||||
1. The parameter variable W and it's optimizer subgraph are placed on the parameter server.
|
||||
1. Operators are added to the subgraphs.
|
||||
- *Send* sends data to the connected *Recv* operator. The
|
||||
scheduler on the receive node will only schedule *Recv* operator
|
||||
to run when the *Send* operator has ran (the *Send* OP will mark
|
||||
the *Recv* OP runnable automatically).
|
||||
- *Enueue* enqueues the input variable, it can block until space
|
||||
become available in the queue.
|
||||
- *Dequeue* outputs configurable numbers of tensors from the
|
||||
queue. It will block until the queue have the required number of
|
||||
tensors.
|
||||
|
||||
|
||||
### Benefits
|
||||
|
||||
- Model parallelism become easier to implement: it's an extension to
|
||||
the trainer - parameter server approach. we already have the
|
||||
communication OPs, but need to extend the graph converter's
|
||||
placement functionality.
|
||||
|
||||
- User-defined optimizer is easier to add - user can now express it as
|
||||
a subgraph.
|
||||
|
||||
- No more duplication logic inside the trainer and the parameter
|
||||
server mentioned in the background section.
|
||||
|
||||
### Challenges
|
||||
|
||||
- It might be hard for the graph converter to cut a general graph
|
||||
(without any hint for which subgraph is the optimizer). We may need
|
||||
to label which subgraph inside the OP graph is the optimizer.
|
||||
|
||||
- It's important to balance the parameter shards of on multiple
|
||||
parameter server. If a single parameter is very big (some
|
||||
word-embedding, fully connected, softmax layer), we need to
|
||||
automatically partition the single parameter onto different
|
||||
parameter servers when possible (only element-wise optimizer depends
|
||||
on the parameter variable).
|
||||
|
||||
### Discussion
|
||||
|
||||
- In the "Aync SGD" figure, the "W" variable on the parameter server
|
||||
could be read and wrote concurrently, what is our locking strategy?
|
||||
E.g., each variable have a lock cpp method to be invoked by every
|
||||
OP, or, have a lock OP.
|
||||
|
||||
- Can the Enqueue OP be implemented under our current tensor design
|
||||
(puts the input tensor into the queue tensor)?
|
||||
|
||||
- *Dequeue* OP will have variable numbers of output (depends on the
|
||||
`min_count` attribute), does our current design support it? (similar
|
||||
question for the *Add* OP)
|
||||
|
||||
|
||||
### References:
|
||||
[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
|
Binary file not shown.
After Width: | Height: | Size: 222 KiB |
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
@ -0,0 +1,73 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/sum_op.h"
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using framework::Tensor;
|
||||
|
||||
class SumOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||
auto *out = ctx.Output<framework::Tensor>("Out");
|
||||
int N = ins.size();
|
||||
|
||||
auto in_dim = ins[0]->dims();
|
||||
|
||||
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
|
||||
for (int i = 1; i < N; i++) {
|
||||
auto dim = ins[i]->dims();
|
||||
PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
|
||||
}
|
||||
out->Resize(in_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
|
||||
AddOutput("Out", "the output tensor of sum operator.");
|
||||
AddComment(R"DOC(
|
||||
Sum the input tensors.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SumGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto outputs = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||
auto dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
||||
for (auto output : outputs) {
|
||||
output->Resize(dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(sum_grad,
|
||||
ops::SumGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,18 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/sum_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(sum_grad,
|
||||
ops::SumGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,65 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SumKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto ins = context.MultiInput<Tensor>("X");
|
||||
auto* out = context.Output<Tensor>("Out");
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
auto result = EigenVector<T>::Flatten(*out);
|
||||
|
||||
int N = ins.size();
|
||||
auto in = EigenVector<T>::Flatten(*(ins[0]));
|
||||
result.device(place) = in;
|
||||
for (int i = 1; i < N; i++) {
|
||||
auto in = EigenVector<T>::Flatten(*(ins[i]));
|
||||
result.device(place) = result + in;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class SumGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* input = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto outs = context.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||
for (auto out : outs) {
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
}
|
||||
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
auto in = EigenVector<T>::Flatten(*input);
|
||||
for (auto out : outs) {
|
||||
auto result = EigenVector<T>::Flatten(*out);
|
||||
result.device(place) = in;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue