Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into op_transpose

update-doc-pybind
xzl 8 years ago
commit e129dcfb74

@ -0,0 +1,106 @@
# Design Doc: Operation Graph Based Parameter Server
## Abstract
We propose an approach to implement the parameter server. In this
approach, there is no fundamental difference between the trainer and
the parameter server: they both run subgraphs, but subgraphs of
different purposes.
## Background
The previous implementations of the parameter server does not run a
subgraph. parameter initialization, optimizer computation, network
communication and checkpointing are implemented twice on both the
trainer and the parameter server.
It would be great if we can write code once and use them on both the
trainer and the parameter server: reduces code duplication and
improves extensibility. Given that after the current refactor, we are
representing everything as a computing graph on the
trainer. Representing everything as a computing graph on the parameter
server becomes a natural extension.
## Design
### Graph Converter
The *graph converter* converts the user-defined operation (OP) graph
into subgraphs to be scheduled on different nodes with the following
steps:
1. OP placement: the OPs will be placed on different nodes according
to heuristic that minimizes estimated total computation
time. Currently we will use a simple heuristic that puts parameter
varable on parameter server workers and everything else on trainer
workers.
1. Add communication OPs to enable the communication between nodes.
We will need these OPs: *Send*, *Recv*, *Enqueue*, *Dequeue*.
Below is an example of converting the user defined graph to the
subgraphs for the trainer and the parameter server:
<img src="src/local-graph.png" width="300"/>
After converting:
<img src="src/dist-graph.png" width="700"/>
1. The parameter variable W and it's optimizer subgraph are placed on the parameter server.
1. Operators are added to the subgraphs.
- *Send* sends data to the connected *Recv* operator. The
scheduler on the receive node will only schedule *Recv* operator
to run when the *Send* operator has ran (the *Send* OP will mark
the *Recv* OP runnable automatically).
- *Enueue* enqueues the input variable, it can block until space
become available in the queue.
- *Dequeue* outputs configurable numbers of tensors from the
queue. It will block until the queue have the required number of
tensors.
### Benefits
- Model parallelism become easier to implement: it's an extension to
the trainer - parameter server approach. we already have the
communication OPs, but need to extend the graph converter's
placement functionality.
- User-defined optimizer is easier to add - user can now express it as
a subgraph.
- No more duplication logic inside the trainer and the parameter
server mentioned in the background section.
### Challenges
- It might be hard for the graph converter to cut a general graph
(without any hint for which subgraph is the optimizer). We may need
to label which subgraph inside the OP graph is the optimizer.
- It's important to balance the parameter shards of on multiple
parameter server. If a single parameter is very big (some
word-embedding, fully connected, softmax layer), we need to
automatically partition the single parameter onto different
parameter servers when possible (only element-wise optimizer depends
on the parameter variable).
### Discussion
- In the "Aync SGD" figure, the "W" variable on the parameter server
could be read and wrote concurrently, what is our locking strategy?
E.g., each variable have a lock cpp method to be invoked by every
OP, or, have a lock OP.
- Can the Enqueue OP be implemented under our current tensor design
(puts the input tensor into the queue tensor)?
- *Dequeue* OP will have variable numbers of output (depends on the
`min_count` attribute), does our current design support it? (similar
question for the *Add* OP)
### References:
[1] [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)

Binary file not shown.

After

Width:  |  Height:  |  Size: 222 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

@ -123,6 +123,15 @@ OperatorBase::OperatorBase(const std::string& type,
CheckAllInputOutputSet();
}
std::vector<std::string> OperatorBase::InputVars() const {
std::vector<std::string> ret_val;
for (auto& o : outputs_) {
ret_val.reserve(ret_val.size() + o.second.size());
ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
}
return ret_val;
}
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
std::vector<std::string> ret_val;
if (has_intermediate) {

@ -94,11 +94,14 @@ class OperatorBase {
const VariableNameMap& Inputs() const { return inputs_; }
const VariableNameMap& Outputs() const { return outputs_; }
//! Get a input with argument's name described in `op_proto`
std::string Input(const std::string& name) const;
//! Get a input which has multiple variables.
const std::vector<std::string>& Inputs(const std::string& name) const;
std::vector<std::string> InputVars() const;
//! Get a output with argument's name described in `op_proto`
std::string Output(const std::string& name) const;
//! Get an output which has multiple variables.
@ -311,9 +314,9 @@ class InferShapeContext {
}
template <typename T>
std::vector<const T*> MultiOutput(const std::string& name) const {
std::vector<T*> MultiOutput(const std::string& name) const {
auto names = op_.Outputs(name);
std::vector<const T*> res;
std::vector<T*> res;
res.reserve(names.size());
std::transform(names.begin(), names.end(), std::back_inserter(res),
[&](const std::string& sub_name) {

@ -62,14 +62,18 @@ void BatchNormBaseLayer::calFeatureMapSize() {
const ImageConfig& conf = config_.inputs(0).image_conf();
imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
imageD_ = inputLayers_[0]->getOutput().getFrameDepth();
if (0 == imageD_) imageD_ = conf.img_size_z();
if (imageH_ == 0 && imageW_ == 0) {
imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
imageW_ = conf.img_size();
} else {
getOutput().setFrameHeight(imageH_);
getOutput().setFrameWidth(imageW_);
getOutput().setFrameDepth(imageD_);
}
imgPixels_ = imageH_ * imageW_;
imgPixels_ = imageH_ * imageW_ * imageD_;
}
} // namespace paddle

@ -80,6 +80,7 @@ protected:
/// Height or width of input image feature.
/// Both of them are 1 if the input is fully-connected layer.
int imageD_;
int imageH_;
int imageW_;
/// Height * Width.

@ -37,7 +37,7 @@ bool CudnnBatchNormLayer::init(const LayerMap& layerMap,
}
void CudnnBatchNormLayer::reshape(int batchSize) {
hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_, imageW_);
hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_ * imageD_, imageW_);
}
void CudnnBatchNormLayer::forward(PassType passType) {
@ -104,7 +104,7 @@ void CudnnBatchNormLayer::forward(PassType passType) {
EPS,
batchSize,
channels_,
imageH_,
imageH_ * imageD_,
imageW_);
}
}

@ -139,7 +139,13 @@ void DetectionOutputLayer::forward(PassType passType) {
allDecodedBBoxes,
&allIndices);
resetOutput(numKept, 7);
if (numKept > 0) {
resetOutput(numKept, 7);
} else {
MatrixPtr outV = getOutputValue();
outV = NULL;
return;
}
MatrixPtr outV = getOutputValue();
getDetectionOutput(confBuffer_->getData(),
numKept,

@ -469,7 +469,7 @@ size_t getDetectionIndices(
const size_t numClasses,
const size_t backgroundId,
const size_t batchSize,
const size_t confThreshold,
const real confThreshold,
const size_t nmsTopK,
const real nmsThreshold,
const size_t keepTopK,

@ -275,7 +275,7 @@ size_t getDetectionIndices(
const size_t numClasses,
const size_t backgroundId,
const size_t batchSize,
const size_t confThreshold,
const real confThreshold,
const size_t nmsTopK,
const real nmsThreshold,
const size_t keepTopK,

@ -24,10 +24,12 @@ bool SwitchOrderLayer::init(const LayerMap& layerMap,
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
auto& img_conf = config_.inputs(0).image_conf();
size_t inD = img_conf.img_size_z();
size_t inH =
img_conf.has_img_size_y() ? img_conf.img_size_y() : img_conf.img_size();
size_t inW = img_conf.img_size();
size_t inC = img_conf.channels();
inH = inH * inD;
inDims_ = TensorShape({0, inC, inH, inW});
outDims_ = TensorShape(4);
@ -64,9 +66,10 @@ void SwitchOrderLayer::setInDims() {
MatrixPtr input = inputLayers_[0]->getOutputValue();
size_t batchSize = input->getHeight();
inDims_.setDim(0, batchSize);
int d = inputLayers_[0]->getOutput().getFrameDepth();
d = (d == 0 ? 1 : d);
int h = inputLayers_[0]->getOutput().getFrameHeight();
if (h != 0) inDims_.setDim(2, h);
if (h != 0) inDims_.setDim(2, h * d);
int w = inputLayers_[0]->getOutput().getFrameWidth();
if (w != 0) inDims_.setDim(3, w);
int totalCount = input->getElementCnt();

@ -1703,6 +1703,55 @@ TEST(Layer, BatchNormalizationLayer) {
#endif
}
void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) {
TestConfig config;
const int CHANNELS = 10;
const int IMG_SIZE = 16;
const int IMG_SIZE_Y = 8;
const int IMG_SIZE_Z = 8;
size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y * IMG_SIZE_Z;
config.layerConfig.set_type(type);
config.layerConfig.set_size(size);
config.layerConfig.set_active_type("sigmoid");
config.biasSize = CHANNELS;
config.inputDefs.push_back({INPUT_DATA,
"layer_0",
/* dim= */ size,
/* paraSize= */ CHANNELS});
config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
config.inputDefs.back().isStatic = true;
config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
config.inputDefs.back().isStatic = true;
LayerInputConfig* input = config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
config.layerConfig.add_inputs();
ImageConfig* img_conf = input->mutable_image_conf();
img_conf->set_channels(CHANNELS);
img_conf->set_img_size(IMG_SIZE);
img_conf->set_img_size_y(IMG_SIZE_Y);
img_conf->set_img_size_z(IMG_SIZE_Z);
testLayerGrad(config,
"batch_norm",
64,
/* trans= */ trans,
useGpu,
/* useWeight */ true);
}
TEST(Layer, testBatchNorm3DLayer) {
testBatchNorm3DLayer("batch_norm", false, false);
#ifndef PADDLE_ONLY_CPU
testBatchNorm3DLayer("batch_norm", false, true);
if (hl_get_cudnn_lib_version() >= int(4000)) {
testBatchNorm3DLayer("cudnn_batch_norm", false, true);
}
#endif
}
void testConvOperator(bool isDeconv) {
TestConfig config;
const int NUM_FILTERS = 16;

@ -0,0 +1,73 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sum_op.h"
#include <vector>
namespace paddle {
namespace operators {
using framework::Tensor;
class SumOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
int N = ins.size();
auto in_dim = ins[0]->dims();
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
for (int i = 1; i < N; i++) {
auto dim = ins[i]->dims();
PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
}
out->Resize(in_dim);
}
};
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
AddOutput("Out", "the output tensor of sum operator.");
AddComment(R"DOC(
Sum the input tensors.
)DOC");
}
};
class SumGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto outputs = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
auto dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
for (auto output : outputs) {
output->Resize(dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp);
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(sum_grad,
ops::SumGradKernel<paddle::platform::CPUPlace, float>);

@ -0,0 +1,18 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/sum_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(sum_grad,
ops::SumGradKernel<paddle::platform::GPUPlace, float>);

@ -0,0 +1,65 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class SumKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto ins = context.MultiInput<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
auto place = context.GetEigenDevice<Place>();
auto result = EigenVector<T>::Flatten(*out);
int N = ins.size();
auto in = EigenVector<T>::Flatten(*(ins[0]));
result.device(place) = in;
for (int i = 1; i < N; i++) {
auto in = EigenVector<T>::Flatten(*(ins[i]));
result.device(place) = result + in;
}
}
};
template <typename Place, typename T>
class SumGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<Tensor>(framework::GradVarName("Out"));
auto outs = context.MultiOutput<Tensor>(framework::GradVarName("X"));
for (auto out : outs) {
out->mutable_data<T>(context.GetPlace());
}
auto place = context.GetEigenDevice<Place>();
auto in = EigenVector<T>::Flatten(*input);
for (auto out : outs) {
auto result = EigenVector<T>::Flatten(*out);
result.device(place) = in;
}
}
};
} // namespace operators
} // namespace paddle

@ -52,6 +52,7 @@ USE_CPU_ONLY_OP(scatter);
USE_OP(top_k);
USE_OP(squared_l2_distance);
USE_OP(transpose);
USE_OP(sum);
namespace paddle {
namespace framework {
@ -217,7 +218,10 @@ All parameter, weight, gradient are variables in Paddle.
-> std::map<std::string, std::vector<std::string>> {
return op.Outputs();
})
.def("output_vars",
[](const OperatorBase &op) { return op.OutputVars(true); })
.def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
.def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
.def("__str__", &OperatorBase::DebugString)
.def("no_intermediate_outputs",
[](const OperatorBase &op) { return op.OutputVars(false); })

@ -271,6 +271,7 @@ message ImageConfig {
// The size of input feature map.
required uint32 img_size = 8;
optional uint32 img_size_y = 9;
optional uint32 img_size_z = 10 [ default = 1 ];
}
message PriorBoxConfig {
@ -519,6 +520,7 @@ message LayerConfig {
// for HuberRegressionLoss
optional double delta = 57 [ default = 1.0 ];
// for 3D data
optional uint64 depth = 58 [ default = 1 ];
// for switch order layer

@ -1332,6 +1332,12 @@ def parse_image(image, input_layer_name, image_conf):
get_img_size(input_layer_name, image_conf.channels)
def parse_image3d(image, input_layer_name, image_conf):
image_conf.channels = image.channels
image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
get_img3d_size(input_layer_name, image_conf.channels)
def parse_norm(norm, input_layer_name, norm_conf):
norm_conf.norm_type = norm.norm_type
config_assert(
@ -2365,9 +2371,11 @@ class BatchNormLayer(LayerBase):
name,
inputs,
bias=True,
img3D=False,
use_global_stats=True,
moving_average_fraction=0.9,
batch_norm_type=None,
mean_var_names=None,
**xargs):
if inputs is None:
inputs = []
@ -2409,24 +2417,69 @@ class BatchNormLayer(LayerBase):
input_layer = self.get_input_layer(0)
image_conf = self.config.inputs[0].image_conf
parse_image(self.inputs[0].image, input_layer.name, image_conf)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if input_layer.width != 0 or input_layer.height != 0:
self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
image_conf.channels, False)
if img3D:
parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if input_layer.width != 0 or input_layer.height != 0:
self.set_cnn_layer(
input_layer_name=name,
depth=image_conf.img_size_z,
height=image_conf.img_size_y,
width=image_conf.img_size,
channels=image_conf.channels,
is_print=True)
else:
self.set_layer_size(input_layer.size)
else:
self.set_layer_size(input_layer.size)
parse_image(self.inputs[0].image, input_layer.name, image_conf)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if input_layer.width != 0 or input_layer.height != 0:
self.set_cnn_layer(
input_layer_name=name,
height=image_conf.img_size_y,
width=image_conf.img_size,
channels=image_conf.channels,
is_print=True)
else:
self.set_layer_size(input_layer.size)
psize = self.calc_parameter_size(image_conf)
dims = [1, psize]
if mean_var_names is not None:
assert len(mean_var_names) == 2
self.inputs[1].parameter_name = mean_var_names[0]
self.inputs[2].parameter_name = mean_var_names[1]
self.create_input_parameter(0, psize)
self.create_input_parameter(1, psize, dims)
self.create_input_parameter(2, psize, dims)
self.create_bias_parameter(bias, psize)
def set_cnn_layer(self,
input_layer_name,
depth=None,
height=None,
width=None,
channels=None,
is_print=True):
depthIsNone = False
if depth is None:
depth = 1
depthIsNone = True
size = depth * height * width * channels
self.set_layer_size(size)
self.set_layer_height_width(height, width)
self.set_layer_depth(depth)
if is_print and depthIsNone:
print("output for %s: c = %d, h = %d, w = %d, size = %d" %
(input_layer_name, channels, height, width, size))
elif is_print:
print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
(input_layer_name, channels, depth, height, width, size))
def calc_parameter_size(self, image_conf):
return image_conf.channels
@ -2688,9 +2741,20 @@ class AddToLayer(LayerBase):
super(AddToLayer, self).__init__(
name, 'addto', 0, inputs=inputs, **xargs)
config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
self.set_layer_size(input_layer.size)
if len(self.inputs) > 1:
for input_index in xrange(len(self.inputs)):
assert self.get_input_layer(0).height == self.get_input_layer(
input_index).height
assert self.get_input_layer(0).width == self.get_input_layer(
input_index).width
assert self.get_input_layer(0).depth == self.get_input_layer(
input_index).depth
self.set_layer_size(self.get_input_layer(0).size)
self.set_layer_height_width(self.get_input_layer(0).height, \
self.get_input_layer(0).width)
self.set_layer_depth(self.get_input_layer(0).depth)
self.create_bias_parameter(bias, self.config.size)
@ -3370,11 +3434,20 @@ class ConcatenateLayer(LayerBase):
name, 'concat', 0, inputs=inputs, **xargs)
size = 0
for input_index in xrange(len(self.inputs)):
assert self.get_input_layer(0).height == self.get_input_layer(
input_index).height
assert self.get_input_layer(0).width == self.get_input_layer(
input_index).width
assert self.get_input_layer(0).depth == self.get_input_layer(
input_index).depth
input_layer = self.get_input_layer(input_index)
input = self.inputs[input_index]
if self.config.size == 0:
size += input_layer.size
self.set_layer_height_width(self.get_input_layer(0).height, \
self.get_input_layer(0).width)
self.set_layer_depth(self.get_input_layer(0).depth)
self.set_layer_size(size)
@ -3675,8 +3748,8 @@ class SwitchOrderLayer(LayerBase):
def __init__(self, name, inputs, reshape, **xargs):
super(SwitchOrderLayer, self).__init__(
name, 'switch_order', 0, inputs=inputs, **xargs)
self.config.reshape_conf.heightAxis.extend(reshape['height'])
self.config.reshape_conf.widthAxis.extend(reshape['width'])
self.config.reshape_conf.height_axis.extend(reshape['height'])
self.config.reshape_conf.width_axis.extend(reshape['width'])
# Deprecated, use a new layer specific class instead

@ -354,6 +354,10 @@ class LayerOutput(object):
def height(self):
return cp.g_layer_map[self.full_name].height
@property
def depth(self):
return cp.g_layer_map[self.full_name].depth
def set_input(self, input):
"""
Set the input for a memory layer. Can only be used for memory layer
@ -943,7 +947,7 @@ def data_layer(name, size, depth=None, height=None, width=None,
if height is not None and width is not None:
num_filters = size / (width * height * depth)
assert num_filters * width * height * depth == size, \
"size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
"size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
@ -1219,7 +1223,8 @@ def detection_output_layer(input_loc,
name=None):
"""
Apply the NMS to the output of network and compute the predict bounding
box location.
box location. The output of this layer could be None if there is no valid
bounding box.
:param name: The Layer Name.
:type name: basestring
@ -2953,13 +2958,15 @@ def img_cmrnorm_layer(input,
def batch_norm_layer(input,
act=None,
name=None,
img3D=False,
num_channels=None,
bias_attr=None,
param_attr=None,
layer_attr=None,
batch_norm_type=None,
moving_average_fraction=0.9,
use_global_stats=None):
use_global_stats=None,
mean_var_names=None):
"""
Batch Normalization Layer. The notation of this layer as follow.
@ -3026,6 +3033,8 @@ def batch_norm_layer(input,
:math:`runningMean = newMean*(1-factor)
+ runningMean*factor`
:type moving_average_fraction: float.
:param mean_var_names: [mean name, variance name]
:type mean_var_names: string list
:return: LayerOutput object.
:rtype: LayerOutput
"""
@ -3039,6 +3048,7 @@ def batch_norm_layer(input,
(batch_norm_type == "cudnn_batch_norm")
l = Layer(
name=name,
img3D=img3D,
inputs=Input(
input.name, image=Image(channels=num_channels), **param_attr.attr),
active_type=act.name,
@ -3047,6 +3057,7 @@ def batch_norm_layer(input,
bias=ParamAttr.to_bias(bias_attr),
moving_average_fraction=moving_average_fraction,
use_global_stats=use_global_stats,
mean_var_names=mean_var_names,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
@ -6410,7 +6421,7 @@ def gated_unit_layer(input,
@wrap_name_default('switch_order')
def switch_order_layer(input,
name=None,
reshape=None,
reshape_axis=None,
act=None,
layer_attr=None):
"""
@ -6421,8 +6432,9 @@ def switch_order_layer(input,
The example usage is:
.. code-block:: python
reshape_axis = 3
switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
reshape = {'height':[ 0, 1, 2], 'width':[3]}
switch = switch_order(input=layer, name='switch', reshape=reshape)
:param input: The input layer.
:type input: LayerOutput
@ -6434,6 +6446,11 @@ def switch_order_layer(input,
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput)
assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
height = [ele for ele in xrange(reshape_axis)]
width = [ele for ele in range(reshape_axis, 4)]
reshape = {'height': height, 'width': width}
l = Layer(
name=name,
inputs=input.name,
@ -6444,6 +6461,7 @@ def switch_order_layer(input,
return LayerOutput(
name=name,
layer_type=LayerType.SWITCH_ORDER_LAYER,
activation=act,
parents=input,
size=l.config.size)

@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer)
test_conv3d_layer test_deconv3d_layer test_BatchNorm3D)
export whole_configs=(test_split_datasource)

@ -62,6 +62,7 @@ layers {
moving_average_fraction: 0.9
height: 227
width: 227
depth: 1
}
layers {
name: "__crmnorm_0__"

@ -62,6 +62,7 @@ layers {
moving_average_fraction: 0.9
height: 256
width: 256
depth: 1
}
layers {
name: "__crmnorm_0__"

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save