Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into refine_im2col

updateWriteDocsCN
chengduoZH 7 years ago
commit e25bfc7508

3
.gitignore vendored

@ -21,11 +21,10 @@ third_party/
cmake-build-*
# generated while compiling
python/paddle/v2/framework/core.so
python/paddle/v2/fluid/core.so
paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
paddle/pybind/pybind.h
python/paddle/v2/framework/tests/tmp/*

@ -0,0 +1,213 @@
#!/usr/bin/env python
from paddle.trainer_config_helpers import *
height = 224
width = 224
num_class = 1000
batch_size = get_config_arg('batch_size', int, 64)
layer_num = get_config_arg("layer_num", int, 50)
is_test = get_config_arg("is_test", bool, False)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args)
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))
#######################Network Configuration #############
def conv_bn_layer(name,
input,
filter_size,
num_filters,
stride,
padding,
channels=None,
active_type=ReluActivation()):
"""
A wrapper for conv layer with batch normalization layers.
Note:
conv layer has no activation.
"""
tmp = img_conv_layer(
name=name + "_conv",
input=input,
filter_size=filter_size,
num_channels=channels,
num_filters=num_filters,
stride=stride,
padding=padding,
act=LinearActivation(),
bias_attr=False)
return batch_norm_layer(
name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_test)
def bottleneck_block(name, input, num_filters1, num_filters2):
"""
A wrapper for bottlenect building block in ResNet.
Last conv_bn_layer has no activation.
Addto layer has activation of relu.
"""
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=1,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[input, last_name], act=ReluActivation())
def mid_projection(name, input, num_filters1, num_filters2, stride=2):
"""
A wrapper for middile projection in ResNet.
projection shortcuts are used for increasing dimensions,
and other shortcuts are identity
branch1: projection shortcuts are used for increasing
dimensions, has no activation.
branch2x: bottleneck building block, shortcuts are identity.
"""
# stride = 2
branch1 = conv_bn_layer(
name=name + '_branch1',
input=input,
filter_size=1,
num_filters=num_filters2,
stride=stride,
padding=0,
active_type=LinearActivation())
last_name = conv_bn_layer(
name=name + '_branch2a',
input=input,
filter_size=1,
num_filters=num_filters1,
stride=stride,
padding=0)
last_name = conv_bn_layer(
name=name + '_branch2b',
input=last_name,
filter_size=3,
num_filters=num_filters1,
stride=1,
padding=1)
last_name = conv_bn_layer(
name=name + '_branch2c',
input=last_name,
filter_size=1,
num_filters=num_filters2,
stride=1,
padding=0,
active_type=LinearActivation())
return addto_layer(
name=name + "_addto", input=[branch1, last_name], act=ReluActivation())
img = data_layer(name='image', size=height * width * 3)
def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3):
"""
A wrapper for 50,101,152 layers of ResNet.
res2_num: number of blocks stacked in conv2_x
res3_num: number of blocks stacked in conv3_x
res4_num: number of blocks stacked in conv4_x
res5_num: number of blocks stacked in conv5_x
"""
# For ImageNet
# conv1: 112x112
tmp = conv_bn_layer(
"conv1",
input=img,
filter_size=7,
channels=3,
num_filters=64,
stride=2,
padding=3)
tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2)
# conv2_x: 56x56
tmp = mid_projection(
name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1)
for i in xrange(2, res2_num + 1, 1):
tmp = bottleneck_block(
name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256)
# conv3_x: 28x28
tmp = mid_projection(
name="res3_1", input=tmp, num_filters1=128, num_filters2=512)
for i in xrange(2, res3_num + 1, 1):
tmp = bottleneck_block(
name="res3_" + str(i),
input=tmp,
num_filters1=128,
num_filters2=512)
# conv4_x: 14x14
tmp = mid_projection(
name="res4_1", input=tmp, num_filters1=256, num_filters2=1024)
for i in xrange(2, res4_num + 1, 1):
tmp = bottleneck_block(
name="res4_" + str(i),
input=tmp,
num_filters1=256,
num_filters2=1024)
# conv5_x: 7x7
tmp = mid_projection(
name="res5_1", input=tmp, num_filters1=512, num_filters2=2048)
for i in xrange(2, res5_num + 1, 1):
tmp = bottleneck_block(
name="res5_" + str(i),
input=tmp,
num_filters1=512,
num_filters2=2048)
tmp = img_pool_layer(
name='avgpool',
input=tmp,
pool_size=7,
stride=1,
pool_type=AvgPooling())
return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation())
if layer_num == 50:
resnet = deep_res_net(3, 4, 6, 3)
elif layer_num == 101:
resnet = deep_res_net(3, 4, 23, 3)
elif layer_num == 152:
resnet = deep_res_net(3, 8, 36, 3)
else:
print("Wrong layer number.")
lbl = data_layer(name="label", size=num_class)
loss = cross_entropy(name='loss', input=resnet, label=lbl)
inputs(img, lbl)
outputs(loss)

@ -5,22 +5,23 @@ function train() {
export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0"
topology=$1
bs=$2
use_mkldnn=$3
if [ $3 == "True" ]; then
layer_num=$2
bs=$3
use_mkldnn=$4
if [ $4 == "True" ]; then
thread=1
log="logs/${topology}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then
log="logs/${topology}-${layer_num}-mkldnn-${bs}.log"
elif [ $4 == "False" ]; then
thread=`nproc`
# each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
log="logs/${topology}-${thread}mklml-${bs}.log"
log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log"
else
echo "Wrong input $3, use True or False."
exit 0
fi
args="batch_size=${bs}"
args="batch_size=${bs},layer_num=${layer_num}"
config="${topology}.py"
paddle train --job=time \
--config=$config \
@ -40,12 +41,9 @@ if [ ! -d "logs" ]; then
mkdir logs
fi
#========== mkldnn ==========#
train vgg 64 True
train vgg 128 True
train vgg 256 True
#========== mklml ===========#
train vgg 64 False
train vgg 128 False
train vgg 256 False
for use_mkldnn in True False; do
for batchsize in 64 128 256; do
train vgg 19 $batchsize $use_mkldnn
train resnet 50 $batchsize $use_mkldnn
done
done

@ -13,7 +13,7 @@ define_py_data_sources2(
settings(
batch_size=batch_size,
learning_rate=0.01 / batch_size,
learning_rate=0.001 / batch_size,
learning_method=MomentumOptimizer(0.9),
regularization=L2Regularization(0.0005 * batch_size))

@ -1,17 +1,12 @@
# Find the CBlas and lapack libraries
#
# It will search MKL, atlas, OpenBlas, reference-cblas in order.
# It will search MKLML, atlas, OpenBlas, reference-cblas in order.
#
# If any cblas implementation found, the following variable will be set.
# CBLAS_PROVIDER # one of MKL, ATLAS, OPENBLAS, REFERENCE
# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE
# CBLAS_INC_DIR # the include directory for cblas.
# CBLAS_LIBS # a list of libraries should be linked by paddle.
# # Each library should be full path to object file.
#
# User should set one of MKL_ROOT, ATLAS_ROOT, OPENBLAS_ROOT, REFERENCE_CBLAS_ROOT
# during cmake. If none of them set, it will try to find cblas implementation in
# system paths.
#
set(CBLAS_FOUND OFF)
@ -30,44 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB)
return()
endif()
## Then find MKL.
set(INTEL_MKL_ROOT "/opt/intel/mkl" CACHE PATH "Folder contains intel mkl libs")
set(MKL_ROOT $ENV{MKL_ROOT} CACHE PATH "Folder contains env MKL")
set(MKL_INCLUDE_SEARCH_PATHS
${MKL_ROOT}/include
${INTEL_MKL_ROOT}/include)
set(MKL_LIB_SEARCH_PATHS
${MKL_ROOT}/lib
${MKL_ROOT}/lib/intel64
${INTEL_MKL_ROOT}/lib
${INTEL_MKL_ROOT}/lib/intel64)
find_path(MKL_INC_DIR mkl.h PATHS
${MKL_INCLUDE_SEARCH_PATHS})
find_path(MKL_LAPACK_INC_DIR mkl_lapacke.h PATHS
${MKL_INCLUDE_SEARCH_PATHS})
find_library(MKL_CORE_LIB NAMES mkl_core PATHS
${MKL_LIB_SEARCH_PATHS})
find_library(MKL_SEQUENTIAL_LIB NAMES mkl_sequential PATHS
${MKL_LIB_SEARCH_PATHS})
find_library(MKL_INTEL_LP64 NAMES mkl_intel_lp64 PATHS
${MKL_LIB_SEARCH_PATHS})
if(MKL_LAPACK_INC_DIR AND MKL_INC_DIR AND MKL_CORE_LIB AND MKL_SEQUENTIAL_LIB AND MKL_INTEL_LP64)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER MKL)
set(CBLAS_INC_DIR ${MKL_INC_DIR} ${MKL_LAPACK_INC_DIR})
set(CBLAS_LIBRARIES ${MKL_INTEL_LP64} ${MKL_SEQUENTIAL_LIB} ${MKL_CORE_LIB})
add_definitions(-DPADDLE_USE_MKL)
add_definitions(-DLAPACK_FOUND)
message(STATUS "Found MKL (include: ${MKL_INC_DIR}, library: ${CBLAS_LIBRARIES})")
message(STATUS "Found lapack in MKL (include: ${MKL_LAPACK_INC_DIR})")
return()
endif()
## Then find atlas.
set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas")
set(ATLAS_INCLUDE_SEARCH_PATHS

@ -46,16 +46,20 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
MESSAGE(STATUS "Build MKLDNN with ${MKLDNN_MKLROOT}")
ENDIF()
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} -Wno-error=strict-overflow")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} -Wno-error=strict-overflow")
ExternalProject_Add(
${MKLDNN_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.10"
GIT_TAG "v0.11"
PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DMKLROOT=${MKLDNN_MKLROOT}
CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLDNN_MKLROOT}
)

@ -27,8 +27,8 @@ ENDIF()
INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
SET(MKLML_VER "mklml_lnx_2018.0.20170720")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.10/${MKLML_VER}.tgz")
SET(MKLML_VER "mklml_lnx_2018.0.1.20171007")
SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.11/${MKLML_VER}.tgz")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml")

@ -86,7 +86,7 @@ IF(NOT ${CBLAS_FOUND})
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
)
SET(CBLAS_PROVIDER openblas)
IF(WITH_C_API)
INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
# Because libopenblas.a is a symbolic link of another library, thus need to
@ -115,7 +115,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
IF(${CBLAS_PROVIDER} MATCHES MKL)
IF("${CBLAS_PROVIDER}" STREQUAL "MKLML")
ADD_LIBRARY(cblas SHARED ${dummyfile})
ELSE()
ADD_LIBRARY(cblas STATIC ${dummyfile})

@ -93,7 +93,7 @@ include_directories(${CMAKE_CURRENT_BINARY_DIR})
if(NOT APPLE AND NOT ANDROID)
find_package(Threads REQUIRED)
link_libraries(${CMAKE_THREAD_LIBS_INIT})
set(CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE} -ldl -lrt")
set(CMAKE_CXX_LINK_EXECUTABLE "${CMAKE_CXX_LINK_EXECUTABLE} -pthread -ldl -lrt")
endif(NOT APPLE AND NOT ANDROID)
function(merge_static_libs TARGET_NAME)

@ -82,6 +82,11 @@ maxout
.. autoclass:: paddle.v2.layer.maxout
:noindex:
roi_pool
--------
.. autoclass:: paddle.v2.layer.roi_pool
:noindex:
Norm Layer
==========

@ -2,112 +2,9 @@
Data Reader Interface and DataSets
==================================
.. toctree::
:maxdepth: 1
DataTypes
=========
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
data/data_reader.rst
data/image.rst
data/dataset.rst

@ -0,0 +1,36 @@
=====================
Data Reader Interface
=====================
DataTypes
=========
.. automodule:: paddle.v2.data_type
:members:
:noindex:
DataFeeder
==========
.. automodule:: paddle.v2.data_feeder
:members:
:noindex:
Reader
======
.. automodule:: paddle.v2.reader
:members:
:noindex:
.. automodule:: paddle.v2.reader.creator
:members:
:noindex:
minibatch
=========
.. automodule:: paddle.v2.minibatch
:members:
:noindex:

@ -0,0 +1,75 @@
Dataset
=======
.. automodule:: paddle.v2.dataset
:members:
:noindex:
mnist
+++++
.. automodule:: paddle.v2.dataset.mnist
:members:
:noindex:
cifar
+++++
.. automodule:: paddle.v2.dataset.cifar
:members:
:noindex:
conll05
+++++++
.. automodule:: paddle.v2.dataset.conll05
:members: get_dict,get_embedding,test
:noindex:
imdb
++++
.. automodule:: paddle.v2.dataset.imdb
:members:
:noindex:
imikolov
++++++++
.. automodule:: paddle.v2.dataset.imikolov
:members:
:noindex:
movielens
+++++++++
.. automodule:: paddle.v2.dataset.movielens
:members:
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.MovieInfo
:noindex:
.. autoclass:: paddle.v2.dataset.movielens.UserInfo
:noindex:
sentiment
+++++++++
.. automodule:: paddle.v2.dataset.sentiment
:members:
:noindex:
uci_housing
+++++++++++
.. automodule:: paddle.v2.dataset.uci_housing
:members:
:noindex:
wmt14
+++++
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:

@ -0,0 +1,5 @@
Image Interface
===============
.. automodule:: paddle.v2.image
:members:

@ -0,0 +1,58 @@
## Evaluator Design
### The Problem
During training or serving, we provide the evaluation function to measure the model performance, e.g., accuracy, precision. In the operator based framework design, the data go through the network pipeline batch by batch. As a result, inside the operator, we only can calculate one minibatch metrics. We need to provide a mechanism to calculate the metrics for each N pass/batch the user wanted.
### Evaluator Design
Currently, every operation is expressed in the graph. we divide the evaluator process into three steps.
1. Initialize the metric state and add it into the block.
2. Calculate the statistic of the metric state in every mini-batch. The single operator is only responsible for calculating necessary statistics for one mini-batch. For example, accuracy operator only calculate a minibatch data if run once.
3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices.
### Implementation
This design is shown in python API.
Each metric operator need to caculate the metric statistic and return the batch aware states, Python side responsible for accumulate the states for each pass.
```python
class Evaluator(object):
"""
Evaluator Base class.
"""
def __init__(self, name, **kwargs):
"""
Different evaluator may has different metric states. E.g, Accuracy need two variables, total and right sample counts.
Auc need four variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives`. So every evaluator should create its needed variables and append to main_program
The initialization of Evaluator should be responsible for:
create metric states and append to the main_program
"""
pass
def _update_ops(self, input, label, **kwargs)
"""
Add mini-batch evaluator caculate operators to the main_program.
Add increment operator to accumulate the metric states.
"""
def reset(self, executor, reset_program=None):
"""
Reset metric states at the begin of each pass/user specified batch number.
Execute the reset_program to reset the states.
"""
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
Execute the eval_program and return the result.
"""
return eval_result
```

@ -15,6 +15,7 @@
- [CMake](#cmake)
- [Layers](#layers)
- [Activations](#activations)
- [Weights](#weights)
- [Unit Tests](#unit-tests)
- [Protobuf Messages](#protobuf-messages)
- [Python API](#python-api)
@ -45,17 +46,23 @@ Figure 1. PaddlePaddle on IA.
### Layers
所有MKL-DNN相关的C++ layers都会按照PaddlePaddle的目录结构存放在
`paddle/gserver/layers`中,并且文件名都会一以*Mkldnn*开头。
`paddle/gserver/layers`中,并且文件名都会一以*MKLDNN*开头。
所有MKL-DNN的layers都会继承于一个叫做`MkldnnLayer`的父类该父类继承于PaddlePaddle的基类`Layer`。
所有MKL-DNN的layers都会继承于一个叫做`MKLDNNLayer`的父类该父类继承于PaddlePaddle的基类`Layer`。
在`MKLDNNLayer`中会提供一些必要的接口和函数,并且会写好`forward`和`backward`的基本逻辑。部分函数定义为纯虚函数,子类只需要实现这些函数即可。
### Activations
由于在PaddlePaddle中激活函数是独立于layer概念的所以会在`paddle/gserver/activations`目录下添加一个`MkldnnActivation.h`文件定义一些用于MKL-DNN的接口实现方法还是会在`ActivationFunction.cpp`文件
由于在PaddlePaddle中激活函数是独立于layer概念的所以会在`paddle/gserver/activations`目录下添加`MKLDNNActivation.h`和`MKLDNNActivation.cpp`文件用于定义和使用MKL-DNN的接口
### Unit Tests
会在`paddle/gserver/test`目录下添加`test_Mkldnn.cpp`和`MkldnnTester.*`用于MKL-DNN的测试。
### Weights
由于有些layer是含有参数的我们会尽量让MKL-DNN的参数与PaddlePaddle中`parameter`共享一块内存。
同时由于MKL-DNN在训练时使用的参数layout可能与PaddlePaddle默认的`nchw`不一致我们会在网络训练的开始和结束时分别转换这个layout使得最终保存的参数格式与PaddlePaddle一致。
Activation的测试计划在PaddlePaddle原有的测试文件上直接添加新的测试type。
### Unit Tests
会在`paddle/gserver/test`目录下添加`test_MKLDNN.cpp`和`MKLDNNTester.*`用于MKL-DNN的测试。
测试分为每个layer(或activation)的单元测试和简单网络的整体测试。
每个测试会对比PaddlePaddle中CPU算出的结果与MKL-DNN的结果小于某个比较小的阈值认为通过。
### Protobuf Messages
根据具体layer的需求可能会在`proto/ModelConfig.proto`里面添加必要的选项。
@ -82,7 +89,7 @@ if use_mkldnn
会在`v1_api_demo`目录下添加一个`mkldnn`的文件夹里面放入一些用于MKL-DNN测试的demo脚本。
### Benchmarking
考虑添加部分逻辑在`benchmark/paddle/image/run.sh`添加使用MKL-DNN的测试
添加`benchmark/paddle/image/run_mkldnn.sh`用于测试使用MKL-DNN之后的性能
### Others
1. 如果在使用MKL-DNN的情况下会把CPU的Buffer对齐为64。
@ -94,14 +101,16 @@ if use_mkldnn
我们总结出一些特别需要注意的点:
1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数我们决定使用已有的`deviceId_`变量来区分layer的属性定义`-2`为`MkldnnLayer`特有的设备ID。
1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数我们决定使用已有的`deviceId_`变量来区分layer的属性定义`-2`为`MKLDNNLayer`特有的设备ID。
2. 重写父类Layer的**init**函数,修改`deviceId_`为`-2`代表这个layer是用于跑在MKL-DNN的环境下。
3. 创建`MkldnnMatrix`用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4. 创建`MkldnnBase`定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MkldnnStream`和`CpuEngine`,和未来可能还会用到`FPGAEngine`等。
5. 在**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue`和`mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。
6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`并针对device在MKL-DNN和CPU之间不统一的情况做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。
7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag用于选择是否使用MKL-DNN的相关功能。
8. 关于MKLDNN参数的保存。由于MKLDNN参数的格式与PaddlePaddle原有的格式存在不一样的情况所以需要在保存参数时同时保存该格式信息。目前准备扩展[Header](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/parameter/Parameter.h#L247)里面的`int32_t version`。这个值不管是在v1还是在v2里面一直保存的是0所以可以充分利用这个信息定义一个枚举处理所有MKLDNN的参数格式从而`MKLDNNLayer`就可以从输入的参数中获取需要的格式信息。
3. 创建`MKLDNNMatrix`,同时继承`CpuMatrix`和`mkldnn::memory`。用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。
4. 创建`MKLDNNBase`定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MKLDNNStream`和`CPUEngine`,和未来可能还会用到`FPGAEngine`等。
5. 每个`MKLDNNlayer`都会有`inVal_`,`inGrad_`,`outVal_`和`outGrad_`分别代表input value input gradientoutput value和output gradient。他们会存放MKL-DNN用到的internal memory。同时还会定义以*ext*开头的`MKLDNNMatrix`(表示external的memory)主要是在格式与PaddlePaddle默认的`nchw`格式不匹配时,用于转换内存的工作。必要的转换函数也会在`MKLDNNLayer`中提前定义好每个子类只需要调用定义好的reset buffer函数即可。
6. 每个`MKLDNNlayer`的resetbuffer相关的函数包括reset input、output的Value和grad他们会根据输入参数reset internal和external的memory当然这两者也可以相等即表示不需要转换。只需要把握一个原则每个`MKLDNNlayer`的子类只需要使用internal的memory就可以了所有external的转换工作在父类的reset函数中都提前准备好了。
7. 一般来说external的memory会尽量与PaddlePaddle中的`value`和`grad`共享内存。同时每个`MKLDNNLayer`中的external output value和gradient(也就是`extOutVal_`和`extOutGrad_`)必须分别与`output_.value`和`output_.grad`共享内存因为PaddlePaddle的activation会直接使用`output_.value`和`output_.grad`。如果不需要external的buffer用于转换那么internal的buffer也会与他们共享内存。
8. 如果MKL-DNN layer的后面接有cpu device那么就会使`output_.value`与`extOutVal_`共享内存,同时数据格式就是`nchw`这样下一个cpu device就能拿到正确的数据。在有cpu device的时候external的memory的格式始终是`nchw`或者`nc`。
9. 由于MKL-DNN的输出操作都是覆盖data的不是在原来的数据上累加所以当网络出现分支时在`backward`时会需要merge不同layer的梯度。`MKLDNNlayer`中会实现merge的方法此时每个小分支的input gradient会先临时保存在一个`MKLDNNMatrix`中由分支处的layer负责求和并把结果放到这个layer的`output_.grad`中。所以整体上,每个子类并不会需要关心分支的事情,也是在父类都实现好了。
10. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag用于选择是否使用MKL-DNN的相关功能。
## References

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

@ -0,0 +1,245 @@
# Design: Sequence Decoder Generating LoDTensors
In tasks such as machine translation and image to text,
a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences.
This documentation describes how to implement the sequence decoder as an operator.
## Beam Search based Decoder
The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences,
it is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.
In the old version of PaddlePaddle, a C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search,
due to the complexity, the implementation relays on a lot of special data structures,
quite trivial and hard to be customized by users.
There are a lot of heuristic tricks in the sequence generation tasks,
so the flexibility of sequence decoder is very important to users.
During PaddlePaddle's refactoring work,
some new concept is proposed such as [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support sequence usage,
and they can help to make the implementation of beam search based sequence decoder **more transparent and modular** .
For example, the RNN sates, candidates IDs and probabilities of beam search can be represented as `LoDTensors`;
the selected candidate's IDs in each time step can be stored in a `TensorArray`, and `Packed` to the sentences translated.
## Changing LoD's absolute offset to relative offsets
The current `LoDTensor` is designed to store levels of variable-length sequences,
it stores several arrays of integers each represents a level.
The integers in each level represents the begin and end (not inclusive) offset of a sequence **in the underlying tensor**,
let's call this format the **absolute-offset LoD** for clear.
The relative-offset LoD can fast retrieve any sequence but fails to represent empty sequences, for example, a two-level LoD is as follows
```python
[[0, 3, 9]
[0, 2, 3, 3, 3, 9]]
```
The first level tells that there are two sequences:
- the first's offset is `[0, 3)`
- the second's offset is `[3, 9)`
while on the second level, there are several empty sequences that both begin and end at `3`.
It is impossible to tell how many empty second-level sequences exist in the first-level sequences.
There are many scenarios that relay on empty sequence representation,
such as machine translation or image to text, one instance has no translations or the empty candidate set for a prefix.
So let's introduce another format of LoD,
it stores **the offsets of the lower level sequences** and is called **relative-offset** LoD.
For example, to represent the same sequences of the above data
```python
[[0, 3, 6]
[0, 2, 3, 3, 3, 9]]
```
the first level represents that there are two sequences,
their offsets in the second-level LoD is `[0, 3)` and `[3, 5)`.
The second level is the same with the relative offset example because the lower level is a tensor.
It is easy to find out the second sequence in the first-level LoD has two empty sequences.
The following demos are based on relative-offset LoD.
## Usage in a simple machine translation model
Let's start from a simple machine translation model that is simplified from [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a simple blueprint of what a sequence decoder can do and how to use it.
The model has an encoder that learns the semantic vector from a sequence,
and a decoder which uses the sequence decoder to generate new sentences.
**Encoder**
```python
import paddle as pd
dict_size = 8000
source_dict_size = dict_size
target_dict_size = dict_size
word_vector_dim = 128
encoder_dim = 128
decoder_dim = 128
beam_size = 5
max_length = 120
# encoder
src_word_id = pd.data(
name='source_language_word',
type=pd.data.integer_value_sequence(source_dict_dim))
src_embedding = pd.embedding(size=source_dict_size, size=word_vector_dim)
src_word_vec = pd.lookup(src_embedding, src_word_id)
encoder_out_seq = pd.gru(input=src_word_vec, size=encoder_dim)
encoder_ctx = pd.last_seq(encoder_out_seq)
# encoder_ctx_proj is the learned semantic vector
encoder_ctx_proj = pd.fc(
encoder_ctx, size=decoder_dim, act=pd.activation.Tanh(), bias=None)
```
**Decoder**
```python
def generate():
decoder = pd.while_loop()
with decoder.step():
decoder_mem = decoder.memory(init=encoder_ctx) # mark the memory
generated_ids = decoder.memory() # TODO init to batch_size <s>s
generated_scores = decoder.memory() # TODO init to batch_size 1s or 0s
target_word = pd.lookup(trg_embedding, gendrated_ids)
# expand encoder_ctx's batch to fit target_word's lod
# for example
# decoder_mem.lod is
# [[0 1 3],
# [0 1 3 6]]
# its tensor content is [a1 a2 a3 a4 a5]
# which means there are 2 sentences to translate
# - the first sentence has 1 translation prefixes, the offsets are [0, 1)
# - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6)
# the target_word.lod is
# [[0, 1, 6]
# [0, 2, 4, 7, 9 12]]
# which means 2 sentences to translate, each has 1 and 5 prefixes
# the first prefix has 2 candidates
# the following has 2, 3, 2, 3 candidates
# the encoder_ctx_expanded's content will be
# [a1 a1 a2 a2 a3 a3 a3 a4 a4 a5 a5 a5]
encoder_ctx_expanded = pd.lod_expand(encoder_ctx, target_word)
decoder_input = pd.fc(
act=pd.activation.Linear(),
input=[target_word, encoder_ctx],
size=3 * decoder_dim)
gru_out, cur_mem = pd.gru_step(
decoder_input, mem=decoder_mem, size=decoder_dim)
scores = pd.fc(
gru_out,
size=trg_dic_size,
bias=None,
act=pd.activation.Softmax())
# K is an config
topk_scores, topk_ids = pd.top_k(scores, K)
topk_generated_scores = pd.add_scalar(topk_scores, generated_scores)
selected_ids, selected_generation_scores = decoder.beam_search(
topk_ids, topk_generated_scores)
# update the states
decoder_mem.update(cur_mem) # tells how to update state
generated_ids.update(selected_ids)
generated_scores.update(selected_generation_scores)
decoder.output(selected_ids)
decoder.output(selected_generation_scores)
translation_ids, translation_scores = decoder()
```
The `decoder.beam_search` is a operator that given the candidates and the scores of translations including the candidates,
return the result of the beam search algorithm.
In this way, users can customize anything on the inputs or outputs of beam search, for example, two ways to prune some translation prefixes
1. meke the correspondind elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate.
2. remove some specific candidate in `selected_ids`
3. get the final `translation_ids`, remove the translation sequence in it.
The implementation of sequence decoder can reuse the C++ class [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30),
so the python syntax is quite similar to a [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop).
Both of them are two-level `LoDTensors`
- the first level represents `batch_size` of (source) sentences;
- the second level represents the candidate ID sets for translation prefix.
for example, 3 source sentences to translate, and has 2, 3, 1 candidates.
Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape,
a `lod_expand` operator is used to expand the LoD of the previous state to fit the current state.
For example, the previous state
* LoD is `[0, 1, 3][0, 2, 5, 6]`
* content of tensor is `a1 a2 b1 b2 b3 c1`
the current state stored in `encoder_ctx_expanded`
* LoD is `[0, 2, 7][0 3 5 8 9 11 11]`
* the content is
- a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates)
- a2 a2
- b1 b1 b1
- b2
- b3 b3
- None (c1 has 0 candidates, so c1 is dropped)
Benefit from the relative offset LoD, empty candidate set can be represented naturally.
the status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor, the corresponding syntax is
```python
decoder.output(selected_ids)
decoder.output(selected_generation_scores)
```
the `selected_ids` is the candidate ids for the prefixes,
it will be `Packed` by `TensorArray` to a two-level `LoDTensor`,
the first level represents the source sequences,
the second level represents generated sequences.
Pack the `selected_scores` will get a `LoDTensor` that stores scores of each candidate of translations.
Pack the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation.
## LoD and shape changes during decoding
<p align="center">
<img src="./images/LOD-and-shape-changes-during-decoding.jpg"/>
</p>
According the image above, the only phrase to change LoD is beam search.
## Beam search design
The beam search algorthm will be implemented as one method of the sequence decoder, it has 3 inputs
1. `topk_ids`, top K candidate ids for each prefix.
2. `topk_scores`, the corresponding scores for `topk_ids`
3. `generated_scores`, the score of the prefixes.
All of the are LoDTensors, so that the sequence affilication is clear.
Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.
It will return three variables
1. `selected_ids`, the final candidate beam search function selected for the next step.
2. `selected_scores`, the scores for the candidates.
3. `generated_scores`, the updated scores for each prefixes (with the new candidates appended).
## Introducing the LoD-based `Pack` and `Unpack` methods in `TensorArray`
The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors,
and they exist in each time step,
so it is natural to store them in arrays.
Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors,
the results of beam search are better to store in a `TensorArray`.
The `Pack` and `UnPack` in `TensorArray` are used to package tensors in the array to a `LoDTensor` or split the `LoDTensor` to an array of tensors.
It needs some extensions to support pack or unpack an array of `LoDTensors`.

@ -99,7 +99,7 @@ PaddlePaddle支持Sparse的训练sparse训练需要训练特征是 :code:`spa
利用更多的计算资源
++++++++++++++++++
利用更多的计算资源可以分为下几个方式来进行\:
利用更多的计算资源可以分为下几个方式来进行\:
* 单机CPU训练

@ -214,7 +214,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs,
```cpp
// if use Eigen unsupported module before include head files
#define EIGEN_USE_GPU
// #define EIGEN_USE_GPU
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel<paddle::platform::GPUPlace, float>);

@ -54,6 +54,46 @@ paddle_error paddle_matrix_set_row(paddle_matrix mat,
return kPD_NO_ERROR;
}
PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
paddle_real* value) {
if (mat == nullptr || value == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (ptr->mat == nullptr) return kPD_NULLPTR;
paddle::real* buf = ptr->mat->getRowBuf(0);
size_t width = ptr->mat->getWidth();
size_t height = ptr->mat->getHeight();
if (ptr->mat->useGpu()) {
#ifdef PADDLE_WITH_CUDA
hl_memcpy(buf, value, sizeof(paddle::real) * width * height);
#else
return kPD_NOT_SUPPORTED;
#endif
} else {
std::copy(value, value + width * height, buf);
}
return kPD_NO_ERROR;
}
PD_API paddle_error paddle_matrix_get_value(paddle_matrix mat,
paddle_real* result) {
if (mat == nullptr || result == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (ptr->mat == nullptr) return kPD_NULLPTR;
paddle::real* buf = ptr->mat->getRowBuf(0);
size_t width = ptr->mat->getWidth();
size_t height = ptr->mat->getHeight();
if (ptr->mat->useGpu()) {
#ifdef PADDLE_WITH_CUDA
hl_memcpy(result, buf, width * height * sizeof(paddle::real));
#else
return kPD_NOT_SUPPORTED;
#endif
} else {
std::copy(buf, buf + width * height, result);
}
return kPD_NO_ERROR;
}
paddle_error paddle_matrix_get_row(paddle_matrix mat,
uint64_t rowID,
paddle_real** rawRowBuffer) {
@ -81,6 +121,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix mat,
paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) {
#ifndef PADDLE_MOBILE_INFERENCE
auto ptr = new paddle::capi::CMatrix();
ptr->mat = paddle::Matrix::createSparseMatrix(
height,
@ -91,6 +132,9 @@ paddle_matrix paddle_matrix_create_sparse(
false,
useGpu);
return ptr;
#else
return nullptr;
#endif
}
paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
@ -100,6 +144,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
uint64_t colSize,
float* valueArray,
uint64_t valueSize) {
#ifndef PADDLE_MOBILE_INFERENCE
if (mat == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (rowArray == nullptr || colArray == nullptr ||
@ -120,4 +165,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
} else {
return kPD_NOT_SUPPORTED;
}
#else
return kPD_NOT_SUPPORTED;
#endif
}

@ -27,18 +27,20 @@ int main() {
CHECK(paddle_arguments_resize(in_args, 1));
// Create input matrix.
paddle_matrix mat = paddle_matrix_create(/* sample_num */ 1,
paddle_matrix mat = paddle_matrix_create(/* sample_num */ 10,
/* size */ 784,
/* useGPU */ false);
srand(time(0));
paddle_real* array;
// Get First row.
CHECK(paddle_matrix_get_row(mat, 0, &array));
std::vector<paddle_real> input;
input.resize(784 * 10);
for (int i = 0; i < 784; ++i) {
array[i] = rand() / ((float)RAND_MAX);
for (int i = 0; i < input.size(); ++i) {
input[i] = rand() / ((float)RAND_MAX);
}
// Set value for the input matrix
CHECK(paddle_matrix_set_value(mat, input.data()));
CHECK(paddle_arguments_set_value(in_args, 0, mat));
@ -51,11 +53,17 @@ int main() {
CHECK(paddle_arguments_get_value(out_args, 0, prob));
CHECK(paddle_matrix_get_row(prob, 0, &array));
std::std::vector<paddle_real> result;
int height;
int width;
CHECK(paddle_matrix_get_shape(prob, &height, &width);
result.resize(height * width);
CHECK(paddle_matrix_get_value(prob, result.data()));
printf("Prob: ");
for (int i = 0; i < 10; ++i) {
printf("%.2f ", array[i]);
for (int i = 0; i < height * width; ++i) {
printf("%.2f ", result[i]);
}
printf("\n");

@ -48,6 +48,7 @@ PD_API paddle_matrix paddle_matrix_create(uint64_t height,
* @param isBinary is binary (either 1 or 0 in matrix) or not.
* @param useGpu is using GPU or not.
* @return paddle_matrix.
* @note Mobile inference does not support this interface.
*/
PD_API paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu);
@ -70,6 +71,16 @@ PD_API paddle_error paddle_matrix_set_row(paddle_matrix mat,
uint64_t rowID,
paddle_real* rowArray);
/**
* @brief paddle_matrix_set_value Set value to matrix.
* @param mat Target Matrix
* @param value Row data.
* @return paddle_error
* @note value should contain enough element of data to init the mat
*/
PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
paddle_real* value);
/**
* @brief PDMatGetRow Get raw row buffer from matrix
* @param [in] mat Target matrix
@ -81,6 +92,15 @@ PD_API paddle_error paddle_matrix_get_row(paddle_matrix mat,
uint64_t rowID,
paddle_real** rawRowBuffer);
/**
* @brief copy data from the matrix
* @param [in] mat Target matrix
* @param [out] result pointer to store the matrix data
* @return paddle_error
* @note the space of the result should allocated before invoke this API
*/
PD_API paddle_error paddle_matrix_get_value(paddle_matrix mat,
paddle_real* result);
/**
* @brief PDMatCreateNone Create None Matrix
* @return
@ -110,6 +130,7 @@ PD_API paddle_error paddle_matrix_get_shape(paddle_matrix mat,
* NULL if the matrix is binary.
* @param [in] valueSize length of value array. Zero if the matrix is binary.
* @return paddle_error
* @note Mobile inference does not support this interface.
*/
PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
int* rowArray,

@ -45,3 +45,49 @@ TEST(CAPIMatrix, createNone) {
paddle_matrix mat = paddle_matrix_create_none();
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_destroy(mat));
}
TEST(CAPIMatrix, cpu_get_set_value) {
paddle_matrix mat = paddle_matrix_create(128, 32, false);
std::vector<paddle_real> sample;
std::vector<paddle_real> result;
sample.resize(128 * 32);
result.resize(128 * 32);
for (size_t i = 0; i < sample.size(); ++i) {
sample[i] = 1.0 / (i + 1.0);
}
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_set_value(mat, sample.data()));
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_value(mat, result.data()));
for (size_t i = 0; i < sample.size(); ++i) {
ASSERT_NEAR(sample[i], result[i], 1e-5);
}
uint64_t height, width;
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_shape(mat, &height, &width));
ASSERT_EQ(128UL, height);
ASSERT_EQ(32UL, width);
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_destroy(mat));
}
#ifdef PADDLE_WITH_CUDA
TEST(CAPIMatrix, gpu_get_set_value) {
paddle_matrix mat = paddle_matrix_create(128, 32, true);
std::vector<paddle_real> sample;
std::vector<paddle_real> result;
sample.resize(128 * 32);
result.resize(128 * 32);
for (size_t i = 0; i < sample.size(); ++i) {
sample[i] = 1.0 / (i + 1.0);
}
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_set_value(mat, sample.data()));
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_value(mat, result.data()));
for (size_t i = 0; i < sample.size(); ++i) {
ASSERT_NEAR(sample[i], result[i], 1e-5);
}
uint64_t height, width;
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_get_shape(mat, &height, &width));
ASSERT_EQ(128UL, height);
ASSERT_EQ(32UL, width);
ASSERT_EQ(kPD_NO_ERROR, paddle_matrix_destroy(mat));
}
#endif

@ -27,7 +27,9 @@ if(WITH_GPU)
set_source_files_properties(${CUDA_CXX_SOURCES}
PROPERTIES COMPILE_FLAGS "-D__NVCC__")
else()
if (NOT MOBILE_INFERENCE)
set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc)
endif()
endif()
set(CUDA_CU_SOURCES

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save