|
|
|
@ -22,41 +22,56 @@ namespace math {
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void KernelUnpool2dMax(const int nthreads,
|
|
|
|
|
const T* input_data,
|
|
|
|
|
const int* indices_data,
|
|
|
|
|
const T* indices_data,
|
|
|
|
|
const int input_height,
|
|
|
|
|
const int input_width,
|
|
|
|
|
const int channels,
|
|
|
|
|
T* output_data,
|
|
|
|
|
const int output_height,
|
|
|
|
|
const int output_width) {
|
|
|
|
|
int bsize = input_height * input_width * channels;
|
|
|
|
|
int csize = input_height * input_width;
|
|
|
|
|
int out_bsize = output_height * output_width * channels;
|
|
|
|
|
int out_csize = output_height * output_width;
|
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
int offset = blockDim.x * gridDim.x;
|
|
|
|
|
for (int i = index; i < nthreads; i += offset) {
|
|
|
|
|
int out_offset = i / (input_height * input_width) \
|
|
|
|
|
* output_height * output_width;
|
|
|
|
|
int bidx = i / bsize;
|
|
|
|
|
int boffset = i % bsize;
|
|
|
|
|
int cidx = boffset / csize;
|
|
|
|
|
int out_offset = bidx * out_bsize + cidx * out_csize;
|
|
|
|
|
int out_index = indices_data[i];
|
|
|
|
|
PADDLE_ASSERT(out_index < (output_height * output_width));
|
|
|
|
|
printf("-------%d------[%f]\n", out_offset + out_index, input_data[i]);
|
|
|
|
|
output_data[out_offset + out_index] = input_data[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void KernelUnpool2dMaxGrad(const int nthreads,
|
|
|
|
|
const T* input_data,
|
|
|
|
|
const int* indices_data,
|
|
|
|
|
const T* indices_data,
|
|
|
|
|
const int input_height,
|
|
|
|
|
const int input_width,
|
|
|
|
|
const int channels,
|
|
|
|
|
const T* output_data,
|
|
|
|
|
const T* output_grad,
|
|
|
|
|
const int output_height,
|
|
|
|
|
const int output_width,
|
|
|
|
|
T* input_grad) {
|
|
|
|
|
int bsize = input_height * input_width * channels;
|
|
|
|
|
int csize = input_height * input_width;
|
|
|
|
|
int out_bsize = output_height * output_width * channels;
|
|
|
|
|
int out_csize = output_height * output_width;
|
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
int offset = blockDim.x * gridDim.x;
|
|
|
|
|
for (int i = index; i < nthreads; i += offset) {
|
|
|
|
|
int out_offset = i / (input_height * input_width) \
|
|
|
|
|
* output_height * output_width;
|
|
|
|
|
int out_index = indices_data[i];
|
|
|
|
|
PADDLE_ASSERT(out_index < (output_height * output_width));
|
|
|
|
|
input_grad[i] = output_grad[out_offset + out_index];
|
|
|
|
|
int bidx = i / bsize;
|
|
|
|
|
int boffset = i % bsize;
|
|
|
|
|
int cidx = boffset / csize;
|
|
|
|
|
int out_offset = bidx * out_bsize + cidx * out_csize;
|
|
|
|
|
int out_index = indices_data[i];
|
|
|
|
|
PADDLE_ASSERT(out_index < (output_height * output_width));
|
|
|
|
|
input_grad[i] = output_grad[out_offset + out_index];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
@ -78,8 +93,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
|
|
|
|
|
const T* input_data = input.data<T>();
|
|
|
|
|
const T* indices_data = indices.data<T>();
|
|
|
|
|
T* output_data = output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
int nthreads = output->numel();
|
|
|
|
|
int nthreads = batch_size * output_channels * input_height * input_width;
|
|
|
|
|
int blocks = (nthreads + 1024 - 1) / 1024;
|
|
|
|
|
dim3 threads(1024, 1);
|
|
|
|
|
dim3 grid(blocks, 1);
|
|
|
|
@ -88,7 +102,7 @@ class Unpool2dMaxFunctor<platform::GPUPlace, T> {
|
|
|
|
|
T><<<grid, threads, 0,
|
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
|
|
|
|
.stream()>>>(nthreads, input_data, indices_data,
|
|
|
|
|
input_height, input_width,
|
|
|
|
|
input_height, input_width, output_channels,
|
|
|
|
|
output_data, output_height, output_width);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
@ -115,7 +129,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
|
|
|
|
|
const T* output_data = output.data<T>();
|
|
|
|
|
const T* output_grad_data = output_grad.data<T>();
|
|
|
|
|
T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
|
|
|
|
|
int nthreads = output.numel();
|
|
|
|
|
int nthreads = batch_size * output_channels * input_height * input_width;
|
|
|
|
|
int blocks = (nthreads + 1024 - 1) / 1024;
|
|
|
|
|
dim3 threads(1024, 1);
|
|
|
|
|
dim3 grid(blocks, 1);
|
|
|
|
@ -125,7 +139,7 @@ class Unpool2dMaxGradFunctor<platform::GPUPlace, T> {
|
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
|
|
|
|
.stream()>>>(
|
|
|
|
|
nthreads, input_data, indices_data,
|
|
|
|
|
input_height, input_width,
|
|
|
|
|
input_height, input_width, output_channels,
|
|
|
|
|
output_data, output_grad_data,
|
|
|
|
|
output_height, output_width,
|
|
|
|
|
input_grad_data);
|
|
|
|
|