add op multiply, delete op elementwise_mul from math.py. (#25480)
* add op multiply, delete op elementwise_mul from math.py. test=develop,test=document_fix * bug fix. test=develop,test=document_fix * bug fix. test=develop,test=document_fix * bug fix. test=develop,test=document_fix * bug fix. test=develop,test=document_fix * add unittest for multiply op. test=develop. * fix code style. test=develop * use random input. test=develop * add test error case for static computation graph. test=develop * add np.random.seed(7) * increase input ndarray size. test=develop * change float32 to float64. test=developfix_copy_if_different
parent
30d1ff3bb4
commit
e3736d73cf
@ -0,0 +1,140 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import paddle
|
||||
import paddle.tensor as tensor
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import Program, program_guard
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
|
||||
class TestMultiplyAPI(unittest.TestCase):
|
||||
"""TestMultiplyAPI."""
|
||||
|
||||
def __run_static_graph_case(self, x_data, y_data, axis=-1):
|
||||
with program_guard(Program(), Program()):
|
||||
x = paddle.nn.data(name='x', shape=x_data.shape, dtype=x_data.dtype)
|
||||
y = paddle.nn.data(name='y', shape=y_data.shape, dtype=y_data.dtype)
|
||||
res = tensor.multiply(x, y, axis=axis)
|
||||
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
outs = exe.run(fluid.default_main_program(),
|
||||
feed={'x': x_data,
|
||||
'y': y_data},
|
||||
fetch_list=[res])
|
||||
res = outs[0]
|
||||
return res
|
||||
|
||||
def __run_dynamic_graph_case(self, x_data, y_data, axis=-1):
|
||||
paddle.enable_imperative()
|
||||
x = paddle.imperative.to_variable(x_data)
|
||||
y = paddle.imperative.to_variable(y_data)
|
||||
res = paddle.multiply(x, y, axis=axis)
|
||||
return res.numpy()
|
||||
|
||||
def test_multiply(self):
|
||||
"""test_multiply."""
|
||||
np.random.seed(7)
|
||||
# test static computation graph: 1-d array
|
||||
x_data = np.random.rand(200)
|
||||
y_data = np.random.rand(200)
|
||||
res = self.__run_static_graph_case(x_data, y_data)
|
||||
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
|
||||
|
||||
# test static computation graph: 2-d array
|
||||
x_data = np.random.rand(2, 500)
|
||||
y_data = np.random.rand(2, 500)
|
||||
res = self.__run_static_graph_case(x_data, y_data)
|
||||
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
|
||||
|
||||
# test static computation graph: broadcast
|
||||
x_data = np.random.rand(2, 500)
|
||||
y_data = np.random.rand(500)
|
||||
res = self.__run_static_graph_case(x_data, y_data)
|
||||
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
|
||||
|
||||
# test static computation graph: broadcast with axis
|
||||
x_data = np.random.rand(2, 300, 40)
|
||||
y_data = np.random.rand(300)
|
||||
res = self.__run_static_graph_case(x_data, y_data, axis=1)
|
||||
expected = np.multiply(x_data, y_data[..., np.newaxis])
|
||||
self.assertTrue(np.allclose(res, expected))
|
||||
|
||||
# test dynamic computation graph: 1-d array
|
||||
x_data = np.random.rand(200)
|
||||
y_data = np.random.rand(200)
|
||||
res = self.__run_dynamic_graph_case(x_data, y_data)
|
||||
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
|
||||
|
||||
# test dynamic computation graph: 2-d array
|
||||
x_data = np.random.rand(20, 50)
|
||||
y_data = np.random.rand(20, 50)
|
||||
res = self.__run_dynamic_graph_case(x_data, y_data)
|
||||
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
|
||||
|
||||
# test dynamic computation graph: broadcast
|
||||
x_data = np.random.rand(2, 500)
|
||||
y_data = np.random.rand(500)
|
||||
res = self.__run_dynamic_graph_case(x_data, y_data)
|
||||
self.assertTrue(np.allclose(res, np.multiply(x_data, y_data)))
|
||||
|
||||
# test dynamic computation graph: broadcast with axis
|
||||
x_data = np.random.rand(2, 300, 40)
|
||||
y_data = np.random.rand(300)
|
||||
res = self.__run_dynamic_graph_case(x_data, y_data, axis=1)
|
||||
expected = np.multiply(x_data, y_data[..., np.newaxis])
|
||||
self.assertTrue(np.allclose(res, expected))
|
||||
|
||||
|
||||
class TestMultiplyError(unittest.TestCase):
|
||||
"""TestMultiplyError."""
|
||||
|
||||
def test_errors(self):
|
||||
"""test_errors."""
|
||||
# test static computation graph: dtype can not be int8
|
||||
paddle.disable_imperative()
|
||||
with program_guard(Program(), Program()):
|
||||
x = paddle.nn.data(name='x', shape=[100], dtype=np.int8)
|
||||
y = paddle.nn.data(name='y', shape=[100], dtype=np.int8)
|
||||
self.assertRaises(TypeError, tensor.multiply, x, y)
|
||||
|
||||
# test static computation graph: inputs must be broadcastable
|
||||
with program_guard(Program(), Program()):
|
||||
x = paddle.nn.data(name='x', shape=[20, 50], dtype=np.float64)
|
||||
y = paddle.nn.data(name='y', shape=[20], dtype=np.float64)
|
||||
self.assertRaises(fluid.core.EnforceNotMet, tensor.multiply, x, y)
|
||||
|
||||
np.random.seed(7)
|
||||
# test dynamic computation graph: dtype can not be int8
|
||||
paddle.enable_imperative()
|
||||
x_data = np.random.randn(200).astype(np.int8)
|
||||
y_data = np.random.randn(200).astype(np.int8)
|
||||
x = paddle.imperative.to_variable(x_data)
|
||||
y = paddle.imperative.to_variable(y_data)
|
||||
self.assertRaises(fluid.core.EnforceNotMet, paddle.multiply, x, y)
|
||||
|
||||
# test dynamic computation graph: inputs must be broadcastable
|
||||
x_data = np.random.rand(200, 5)
|
||||
y_data = np.random.rand(200)
|
||||
x = paddle.imperative.to_variable(x_data)
|
||||
y = paddle.imperative.to_variable(y_data)
|
||||
self.assertRaises(fluid.core.EnforceNotMet, paddle.multiply, x, y)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue