|
|
|
@ -480,6 +480,8 @@ def dynamic_lstm(input,
|
|
|
|
|
forward, _ = fluid.layers.dynamic_lstm(
|
|
|
|
|
input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
|
|
|
|
|
"""
|
|
|
|
|
assert _in_dygraph_mode(
|
|
|
|
|
) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
|
|
|
|
|
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
|
|
|
|
|
helper = LayerHelper('lstm', **locals())
|
|
|
|
|
size = size // 4
|
|
|
|
@ -864,6 +866,9 @@ def dynamic_lstmp(input,
|
|
|
|
|
proj_activation="tanh")
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
assert _in_dygraph_mode(
|
|
|
|
|
) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"
|
|
|
|
|
|
|
|
|
|
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
|
|
|
|
|
helper = LayerHelper('lstmp', **locals())
|
|
|
|
|
size = size // 4
|
|
|
|
@ -1035,6 +1040,9 @@ def dynamic_gru(input,
|
|
|
|
|
hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
assert _in_dygraph_mode(
|
|
|
|
|
) is not True, "please use gru instead of dynamic_gru in dygraph mode!"
|
|
|
|
|
|
|
|
|
|
helper = LayerHelper('gru', **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
|
|
|
|
@ -1751,6 +1759,8 @@ def sequence_conv(input,
|
|
|
|
|
Variable: output of sequence_conv
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_conv', **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
filter_shape = [filter_size * input.shape[1], num_filters]
|
|
|
|
@ -1810,6 +1820,8 @@ def sequence_softmax(input, use_cudnn=False, name=None):
|
|
|
|
|
dtype='float32', lod_level=1)
|
|
|
|
|
x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_softmax', **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
softmax_out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -2302,6 +2314,8 @@ def sequence_pool(input, pool_type, is_test=False):
|
|
|
|
|
last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
|
|
|
|
|
first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_pool', **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
pool_out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -2341,6 +2355,8 @@ def sequence_concat(input, name=None):
|
|
|
|
|
|
|
|
|
|
out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_concat', **locals())
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
|
|
|
|
|
helper.append_op(
|
|
|
|
@ -2468,6 +2484,8 @@ def sequence_slice(input, offset, length, name=None):
|
|
|
|
|
subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
|
|
|
|
|
length=length)
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper("sequence_slice", **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -3927,6 +3945,8 @@ def sequence_expand(x, y, ref_level=-1, name=None):
|
|
|
|
|
dtype='float32', lod_level=1)
|
|
|
|
|
out = layers.sequence_expand(x=x, y=y, ref_level=0)
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_expand', input=x, **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
tmp = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -3993,6 +4013,8 @@ def sequence_expand_as(x, y, name=None):
|
|
|
|
|
dtype='float32', lod_level=1)
|
|
|
|
|
out = layers.sequence_expand_as(x=x, y=y)
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_expand_as', input=x, **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
tmp = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -4039,6 +4061,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None):
|
|
|
|
|
out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_pad', input=x, **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -4105,6 +4129,8 @@ def sequence_unpad(x, length, name=None):
|
|
|
|
|
out = fluid.layers.sequence_unpad(x=x, length=len)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_unpad', input=x, **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -5278,6 +5304,8 @@ def sequence_reshape(input, new_dim):
|
|
|
|
|
x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
|
|
|
|
|
x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_reshape', **locals())
|
|
|
|
|
out = helper.create_variable_for_type_inference(helper.input_dtype())
|
|
|
|
|
helper.append_op(
|
|
|
|
@ -5812,6 +5840,8 @@ def im2sequence(input,
|
|
|
|
|
input=layer, stride=[1, 1], filter_size=[2, 2])
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
|
|
|
|
|
if isinstance(filter_size, int):
|
|
|
|
|
filter_size = [filter_size, filter_size]
|
|
|
|
@ -6228,7 +6258,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
|
|
|
|
|
},
|
|
|
|
|
outputs={'Diff': diff,
|
|
|
|
|
'Out': loss},
|
|
|
|
|
attrs={'sigma': sigma})
|
|
|
|
|
attrs={'sigma': sigma if sigma is not None else 1.0})
|
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -7589,6 +7619,8 @@ def sequence_scatter(input, index, updates, name=None):
|
|
|
|
|
output = fluid.layers.sequence_scatter(input, index, updates)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_scatter', **locals())
|
|
|
|
|
dtype = helper.input_dtype()
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype)
|
|
|
|
@ -8677,6 +8709,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
|
|
|
|
|
x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
|
|
|
|
|
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper('sequence_enumerate', **locals())
|
|
|
|
|
out = helper.create_variable_for_type_inference(
|
|
|
|
|
helper.input_dtype(), stop_gradient=True)
|
|
|
|
@ -8716,6 +8750,8 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
|
|
|
|
|
Variable: The output sequence mask.
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
|
|
|
|
|
helper = LayerHelper('sequence_mask', **locals())
|
|
|
|
|
if name is None:
|
|
|
|
@ -9766,6 +9802,8 @@ def sequence_reverse(x, name=None):
|
|
|
|
|
Returns:
|
|
|
|
|
out(${y_type}): ${y_comment}
|
|
|
|
|
"""
|
|
|
|
|
assert not _in_dygraph_mode(), (
|
|
|
|
|
"sequence layer is not supported in dygraph mode yet.")
|
|
|
|
|
helper = LayerHelper("sequence_reverse", **locals())
|
|
|
|
|
if name is None:
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
|
|
|
|