|
|
|
@ -18,23 +18,28 @@ import unittest
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
from paddle.fluid.imperative.nn import EMBEDDING
|
|
|
|
|
import paddle.fluid.framework as framework
|
|
|
|
|
import paddle.fluid.optimizer as optimizer
|
|
|
|
|
from paddle.fluid.optimizer import SGDOptimizer
|
|
|
|
|
from paddle.fluid.imperative.base import to_variable
|
|
|
|
|
import numpy as np
|
|
|
|
|
from paddle.fluid.backward import append_backward
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleLSTMRNN(fluid.imperative.Layer):
|
|
|
|
|
def __init__(self, hidden_size, num_layers=2, init_scale=0.1, dropout=None):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
hidden_size,
|
|
|
|
|
num_steps,
|
|
|
|
|
num_layers=2,
|
|
|
|
|
init_scale=0.1,
|
|
|
|
|
dropout=None):
|
|
|
|
|
super(SimpleLSTMRNN, self).__init__()
|
|
|
|
|
self._hidden_size = hidden_size
|
|
|
|
|
self._num_layers = num_layers
|
|
|
|
|
self._init_scale = init_scale
|
|
|
|
|
self._dropout = dropout
|
|
|
|
|
self.input = None
|
|
|
|
|
self.num_steps = num_steps
|
|
|
|
|
|
|
|
|
|
def _build_once(self,
|
|
|
|
|
input_embedding,
|
|
|
|
|
seq_len,
|
|
|
|
|
init_hidden=None,
|
|
|
|
|
init_cell=None):
|
|
|
|
|
def _build_once(self, input_embedding, init_hidden=None, init_cell=None):
|
|
|
|
|
self.weight_1_arr = []
|
|
|
|
|
self.weight_2_arr = []
|
|
|
|
|
self.bias_arr = []
|
|
|
|
@ -57,7 +62,7 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
|
|
|
|
|
default_initializer=fluid.initializer.Constant(0.0))
|
|
|
|
|
self.bias_arr.append(bias_1)
|
|
|
|
|
|
|
|
|
|
pre_hidden = self.layers.slice(
|
|
|
|
|
pre_hidden = fluid.layers.slice(
|
|
|
|
|
init_hidden, axes=[0], starts=[i], ends=[i + 1])
|
|
|
|
|
pre_cell = fluid.layers.slice(
|
|
|
|
|
init_cell, axes=[0], starts=[i], ends=[i + 1])
|
|
|
|
@ -65,22 +70,20 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
|
|
|
|
|
pre_hidden, shape=[-1, self._hidden_size])
|
|
|
|
|
pre_cell = fluid.layers.reshape(
|
|
|
|
|
pre_cell, shape=[-1, self._hidden_size])
|
|
|
|
|
fluid.hidden_array.append(pre_hidden)
|
|
|
|
|
fluid.cell_array.append(pre_cell)
|
|
|
|
|
|
|
|
|
|
def forward(self,
|
|
|
|
|
input_embedding,
|
|
|
|
|
seq_len,
|
|
|
|
|
init_hidden=None,
|
|
|
|
|
init_cell=None):
|
|
|
|
|
self.hidden_array.append(pre_hidden)
|
|
|
|
|
self.cell_array.append(pre_cell)
|
|
|
|
|
|
|
|
|
|
def forward(self, input_embedding, init_hidden=None, init_cell=None):
|
|
|
|
|
res = []
|
|
|
|
|
for index in range(seq_len):
|
|
|
|
|
for index in range(self.num_steps):
|
|
|
|
|
self.input = fluid.layers.slice(
|
|
|
|
|
input_embedding, axes=[1], starts=[index], ends=[index + 1])
|
|
|
|
|
self.input = fluid.layers.reshape(
|
|
|
|
|
self.input, shape=[-1, self._hidden_size])
|
|
|
|
|
for k in range(self._num_layers):
|
|
|
|
|
pre_hidden = self.hidden_array[k]
|
|
|
|
|
print("pre_hidden shape is:{}".format(pre_hidden.shape))
|
|
|
|
|
print("input shape is:{}".format(self.input.shape))
|
|
|
|
|
pre_cell = self.cell_array[k]
|
|
|
|
|
weight_1 = self.weight_1_arr[k]
|
|
|
|
|
bias = self.bias_arr[k]
|
|
|
|
@ -89,38 +92,41 @@ class SimpleLSTMRNN(fluid.imperative.Layer):
|
|
|
|
|
gate_input = fluid.layers.matmul(x=nn, y=weight_1)
|
|
|
|
|
|
|
|
|
|
gate_input = fluid.layers.elementwise_add(gate_input, bias)
|
|
|
|
|
i, j, f, o = fluid.layers.split(
|
|
|
|
|
gate_input, num_or_sections=4, dim=-1)
|
|
|
|
|
|
|
|
|
|
c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
|
|
|
|
|
i) * fluid.layers.tanh(j)
|
|
|
|
|
m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
|
|
|
|
|
|
|
|
|
|
self.hidden_array[k] = m
|
|
|
|
|
self.cell_array[k] = c
|
|
|
|
|
self.input = m
|
|
|
|
|
|
|
|
|
|
if self.dropout is not None and self.dropout > 0.0:
|
|
|
|
|
self.input = fluid.layers.dropout(
|
|
|
|
|
self.input,
|
|
|
|
|
dropout_prob=self.dropout,
|
|
|
|
|
dropout_implementation='upscale_in_train')
|
|
|
|
|
|
|
|
|
|
res.append(
|
|
|
|
|
fluid.layers.reshape(
|
|
|
|
|
input, shape=[1, -1, self._hidden_size]))
|
|
|
|
|
real_res = fluid.layers.concat(res, 0)
|
|
|
|
|
real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
|
|
|
|
|
last_hidden = fluid.layers.concat(self.hidden_array, 1)
|
|
|
|
|
last_hidden = fluid.layers.reshape(
|
|
|
|
|
last_hidden, shape=[-1, self._num_layers, self._hidden_size])
|
|
|
|
|
last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
|
|
|
|
|
last_cell = fluid.layers.concat(self.cell_array, 1)
|
|
|
|
|
last_cell = fluid.layers.reshape(
|
|
|
|
|
last_cell, shape=[-1, self._num_layers, self._hidden_size])
|
|
|
|
|
last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
|
|
|
|
|
|
|
|
|
|
return real_res, last_hidden, last_cell
|
|
|
|
|
print("gate_input shape is: {}".format(gate_input.shape))
|
|
|
|
|
print("gate_input value is :{}".format(gate_input._numpy()))
|
|
|
|
|
print("gate_input desc is :{}".format(gate_input))
|
|
|
|
|
# i, j, f, o = fluid.layers.split(gate_input, num_or_sections=4, dim=-1)
|
|
|
|
|
# #
|
|
|
|
|
# # c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid(
|
|
|
|
|
# # i) * fluid.layers.tanh(j)
|
|
|
|
|
# # m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o)
|
|
|
|
|
# #
|
|
|
|
|
# # self.hidden_array[k] = m
|
|
|
|
|
# # self.cell_array[k] = c
|
|
|
|
|
# # self.input = m
|
|
|
|
|
# #
|
|
|
|
|
# # if self.dropout is not None and self.dropout > 0.0:
|
|
|
|
|
# # self.input = fluid.layers.dropout(
|
|
|
|
|
# # self.input,
|
|
|
|
|
# # dropout_prob=self.dropout,
|
|
|
|
|
# # dropout_implementation='upscale_in_train')
|
|
|
|
|
# #
|
|
|
|
|
# # res.append(
|
|
|
|
|
# # fluid.layers.reshape(
|
|
|
|
|
# # input, shape=[1, -1, self._hidden_size]))
|
|
|
|
|
# # real_res = fluid.layers.concat(res, 0)
|
|
|
|
|
# # real_res = fluid.layers.transpose(x=real_res, perm=[1, 0, 2])
|
|
|
|
|
# # last_hidden = fluid.layers.concat(self.hidden_array, 1)
|
|
|
|
|
# # last_hidden = fluid.layers.reshape(
|
|
|
|
|
# # last_hidden, shape=[-1, self._num_layers, self._hidden_size])
|
|
|
|
|
# # last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2])
|
|
|
|
|
# # last_cell = fluid.layers.concat(self.cell_array, 1)
|
|
|
|
|
# # last_cell = fluid.layers.reshape(
|
|
|
|
|
# # last_cell, shape=[-1, self._num_layers, self._hidden_size])
|
|
|
|
|
# # last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2])
|
|
|
|
|
# #
|
|
|
|
|
# return real_res, last_hidden, last_cell
|
|
|
|
|
return [1], [2], [3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PtbModel(fluid.imperative.Layer):
|
|
|
|
@ -137,8 +143,10 @@ class PtbModel(fluid.imperative.Layer):
|
|
|
|
|
self.init_scale = init_scale
|
|
|
|
|
self.num_layers = num_layers
|
|
|
|
|
self.num_steps = num_steps
|
|
|
|
|
self.dropout = dropout
|
|
|
|
|
self.simple_lstm_rnn = SimpleLSTMRNN(
|
|
|
|
|
hidden_size,
|
|
|
|
|
num_steps,
|
|
|
|
|
num_layers=num_layers,
|
|
|
|
|
init_scale=init_scale,
|
|
|
|
|
dropout=dropout)
|
|
|
|
@ -153,21 +161,23 @@ class PtbModel(fluid.imperative.Layer):
|
|
|
|
|
|
|
|
|
|
def _build_once(self, input, label, init_hidden, init_cell):
|
|
|
|
|
self.softmax_weight = fluid.layers.create_parameter(
|
|
|
|
|
[self._hidden_size, self._vocab_size],
|
|
|
|
|
[self.hidden_size, self.vocab_size],
|
|
|
|
|
dtype="float32",
|
|
|
|
|
name="softmax_weight",
|
|
|
|
|
default_initializer=fluid.initializer.UniformInitializer(
|
|
|
|
|
low=-self._init_scale, high=self._init_scale))
|
|
|
|
|
low=-self.init_scale, high=self.init_scale))
|
|
|
|
|
self.softmax_bias = fluid.layers.create_parameter(
|
|
|
|
|
[self._vocab_size],
|
|
|
|
|
[self.vocab_size],
|
|
|
|
|
dtype="float32",
|
|
|
|
|
name='softmax_bias',
|
|
|
|
|
default_initializer=fluid.initializer.UniformInitializer(
|
|
|
|
|
low=-self._init_scale, high=self._init_scale))
|
|
|
|
|
low=-self.init_scale, high=self.init_scale))
|
|
|
|
|
|
|
|
|
|
def forward(self, input, label, init_hidden, init_cell):
|
|
|
|
|
|
|
|
|
|
init_h = fluid.layers.reshape(
|
|
|
|
|
init_hidden, shape=[self.num_layers, -1, self.hidden_size])
|
|
|
|
|
|
|
|
|
|
init_c = fluid.layers.reshape(
|
|
|
|
|
init_cell, shape=[self.num_layers, -1, self.hidden_size])
|
|
|
|
|
|
|
|
|
@ -179,6 +189,7 @@ class PtbModel(fluid.imperative.Layer):
|
|
|
|
|
x_emb,
|
|
|
|
|
dropout_prob=self.drop_out,
|
|
|
|
|
dropout_implementation='upscale_in_train')
|
|
|
|
|
print("init_c is {}".format(init_c))
|
|
|
|
|
rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h,
|
|
|
|
|
init_c)
|
|
|
|
|
rnn_out = fluid.layers.reshape(
|
|
|
|
@ -202,14 +213,53 @@ class PtbModel(fluid.imperative.Layer):
|
|
|
|
|
class TestImperativePtbRnn(unittest.TestCase):
|
|
|
|
|
def test_mnist_cpu_float32(self):
|
|
|
|
|
seed = 90
|
|
|
|
|
hidden_size = 10
|
|
|
|
|
vocab_size = 1000
|
|
|
|
|
num_layers = 1
|
|
|
|
|
num_steps = 3
|
|
|
|
|
init_scale = 0.1
|
|
|
|
|
batch_size = 4
|
|
|
|
|
|
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
# TODO: marsyang1993 Change seed to
|
|
|
|
|
ptb_model = PtbModel(
|
|
|
|
|
hidden_size=10,
|
|
|
|
|
vocab_size=1000,
|
|
|
|
|
num_layers=1,
|
|
|
|
|
num_steps=3,
|
|
|
|
|
init_scale=0.1)
|
|
|
|
|
hidden_size=hidden_size,
|
|
|
|
|
vocab_size=vocab_size,
|
|
|
|
|
num_layers=num_layers,
|
|
|
|
|
num_steps=num_steps,
|
|
|
|
|
init_scale=init_scale)
|
|
|
|
|
|
|
|
|
|
sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
|
print("q")
|
|
|
|
|
for i in range(2):
|
|
|
|
|
x_data = np.arange(12).reshape(4, 3).astype('int64')
|
|
|
|
|
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
|
|
|
|
|
x_data = x_data.reshape((-1, num_steps, 1))
|
|
|
|
|
y_data = y_data.reshape((-1, 1))
|
|
|
|
|
init_hidden_data = np.zeros(
|
|
|
|
|
(num_layers, batch_size, hidden_size), dtype='float32')
|
|
|
|
|
init_cell_data = np.zeros(
|
|
|
|
|
(num_layers, batch_size, hidden_size), dtype='float32')
|
|
|
|
|
x = to_variable(x_data)
|
|
|
|
|
y = to_variable(y_data)
|
|
|
|
|
init_hidden = to_variable(init_hidden_data)
|
|
|
|
|
init_cell = to_variable(init_cell_data)
|
|
|
|
|
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
|
|
|
|
|
init_cell)
|
|
|
|
|
dy_param_init = dict()
|
|
|
|
|
if i == 0:
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_init[param.name] = param._numpy()
|
|
|
|
|
dy_loss._backward()
|
|
|
|
|
sgd.minimize(dy_loss)
|
|
|
|
|
dy_param_updated = dict()
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_updated[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|