add ut for pipeline training (#18289)
parent
5826b72e06
commit
e42057cd1a
@ -0,0 +1,112 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import numpy as np
|
||||
import os
|
||||
import shutil
|
||||
import unittest
|
||||
|
||||
|
||||
class TestPipeline(unittest.TestCase):
|
||||
""" TestCases for Pipeline Training. """
|
||||
|
||||
def test_pipeline(self):
|
||||
x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
|
||||
emb_x = layers.embedding(
|
||||
input=x,
|
||||
param_attr=fluid.ParamAttr(name="embx"),
|
||||
size=[10, 2],
|
||||
is_sparse=False)
|
||||
emb_y = layers.embedding(
|
||||
input=y,
|
||||
param_attr=fluid.ParamAttr(
|
||||
name="emby", learning_rate=0.9),
|
||||
size=[10, 2],
|
||||
is_sparse=False)
|
||||
|
||||
concat = layers.concat([emb_x, emb_y], axis=1)
|
||||
|
||||
fc = layers.fc(input=concat,
|
||||
name="fc",
|
||||
size=1,
|
||||
num_flatten_dims=1,
|
||||
bias_attr=False)
|
||||
loss = layers.reduce_mean(fc)
|
||||
|
||||
optimizer = fluid.optimizer.SGD(learning_rate=0.5)
|
||||
optimizer = fluid.optimizer.PipelineOptimizer(
|
||||
optimizer,
|
||||
cut_list=[[emb_x, emb_y], [loss]],
|
||||
place_list=[
|
||||
fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()
|
||||
],
|
||||
concurrency_list=[1, 1, 1],
|
||||
queue_size=1,
|
||||
sync_steps=10000000, )
|
||||
optimizer.minimize(loss)
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
#prepare data
|
||||
batch_size = 100
|
||||
|
||||
def binary_print(slot, fout):
|
||||
num = np.int16(len(slot) + 1)
|
||||
num.tofile(fout)
|
||||
a = np.int64(batch_size)
|
||||
a.tofile(fout)
|
||||
slot.tofile(fout)
|
||||
|
||||
#batch1 = np.array([[0,1], [1,2], [2,3]]).astype("int64").reshape(batch_size,2,1)
|
||||
#batch2 = np.array([[1,2], [2,3], [3,4]]).astype("int64").reshape(batch_size,2,1)
|
||||
batch1 = np.ones(
|
||||
(batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
|
||||
batch2 = np.ones(
|
||||
(batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
|
||||
data = [batch1, batch2]
|
||||
filelist = []
|
||||
for i in range(2):
|
||||
filelist.append("test_pipeline_input_" + str(i))
|
||||
for f in filelist:
|
||||
with open(f, "wb") as fout:
|
||||
for batch_data in data:
|
||||
for ins in batch_data:
|
||||
for slot in ins:
|
||||
binary_print(slot, fout)
|
||||
|
||||
dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
|
||||
dataset.set_use_var([x, y])
|
||||
dataset.set_batch_size(batch_size)
|
||||
dataset.set_filelist(filelist)
|
||||
|
||||
for epoch in range(1):
|
||||
exe.train_from_dataset(
|
||||
fluid.default_main_program(),
|
||||
dataset,
|
||||
thread=1,
|
||||
debug=False,
|
||||
fetch_list=[],
|
||||
fetch_info=[],
|
||||
print_period=1)
|
||||
|
||||
for f in filelist:
|
||||
os.remove(f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue