commit
e53dc8a2e4
@ -0,0 +1,86 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/clip_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::LoDTensor;
|
||||
|
||||
class ClipOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
|
||||
"Input(X) of ClipOp should not be null.");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
|
||||
"Output(Out) of ClipOp should not be null.");
|
||||
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
|
||||
auto max = Attr<float>("max");
|
||||
auto min = Attr<float>("min");
|
||||
PADDLE_ENFORCE_LT(min, max, "max should be greater than min.");
|
||||
ctx.Output<LoDTensor>("Out")->Resize(x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AttrType>
|
||||
class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ClipOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X",
|
||||
"(Tensor)The input of clip op."
|
||||
"The input should be a k-D tensor(k > 0 and k < 7)");
|
||||
AddOutput("Out", "(Tensor)The output of clip op with shape as input(X)");
|
||||
AddAttr<AttrType>(
|
||||
"min", "(float)Minimum value, under which element is replaced by min.");
|
||||
AddAttr<AttrType>(
|
||||
"max", "(float)Maximum value, above which element is replaced by max");
|
||||
AddComment(R"DOC(
|
||||
Clip operator limits the given input within an interval. The interval is
|
||||
specified with arguments 'min' and 'max'.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class ClipOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
|
||||
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
|
||||
if (x_grad != nullptr) {
|
||||
x_grad->Resize(x_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(clip, ops::ClipOp, ops::ClipOpMaker<float>, clip_grad,
|
||||
ops::ClipOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(clip,
|
||||
ops::ClipKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(clip_grad,
|
||||
ops::ClipGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,21 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/clip_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(clip,
|
||||
ops::ClipKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(clip_grad,
|
||||
ops::ClipGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,97 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/platform/transform.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
using platform::Transform;
|
||||
|
||||
template <typename T>
|
||||
class ClipFunctor {
|
||||
public:
|
||||
explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
|
||||
HOSTDEVICE T operator()(const T& x) const {
|
||||
if (x < min_)
|
||||
return min_;
|
||||
else if (x > max_)
|
||||
return max_;
|
||||
else
|
||||
return x;
|
||||
}
|
||||
|
||||
private:
|
||||
T min_;
|
||||
T max_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class ClipGradFunctor {
|
||||
public:
|
||||
explicit ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
|
||||
HOSTDEVICE T operator()(const T& x, const T& y) const {
|
||||
return (y > min_ && y < max_) ? x : 0;
|
||||
}
|
||||
|
||||
private:
|
||||
T min_;
|
||||
T max_;
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ClipKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto max = context.Attr<T>("max");
|
||||
auto min = context.Attr<T>("min");
|
||||
auto* x = context.Input<Tensor>("X");
|
||||
auto* out = context.Output<Tensor>("Out");
|
||||
T* out_data = out->mutable_data<T>(context.GetPlace());
|
||||
const T* x_data = x->data<T>();
|
||||
int64_t numel = x->numel();
|
||||
Transform<Place> trans;
|
||||
trans(context.device_context(), x_data, x_data + numel, out_data,
|
||||
ClipFunctor<T>(min, max));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ClipGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto max = context.Attr<T>("max");
|
||||
auto min = context.Attr<T>("min");
|
||||
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
if (d_x != nullptr) {
|
||||
auto* x = context.Input<Tensor>("X");
|
||||
int64_t numel = d_out->numel();
|
||||
auto* d_x_data = d_x->mutable_data<T>(context.GetPlace());
|
||||
const T* d_out_data = d_out->data<T>();
|
||||
const T* x_data = x->data<T>();
|
||||
Transform<Place> trans;
|
||||
trans(context.device_context(), d_out_data, d_out_data + numel, x_data,
|
||||
d_x_data, ClipGradFunctor<T>(min, max));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,58 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestClipOp(OpTest):
|
||||
def setUp(self):
|
||||
self.max_relative_error = 0.006
|
||||
self.initTestCase()
|
||||
input = np.random.random(self.shape).astype("float32")
|
||||
input[np.abs(input - self.min) < self.max_relative_error] = 0.5
|
||||
input[np.abs(input - self.max) < self.max_relative_error] = 0.5
|
||||
self.op_type = "clip"
|
||||
self.inputs = {'X': input, }
|
||||
self.attrs = {}
|
||||
self.attrs['min'] = self.min
|
||||
self.attrs['max'] = self.max
|
||||
self.outputs = {
|
||||
'Out': np.clip(self.inputs['X'], self.attrs['min'],
|
||||
self.attrs['max'])
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=self.max_relative_error)
|
||||
|
||||
def initTestCase(self):
|
||||
self.shape = (4, 4)
|
||||
self.max = 0.7
|
||||
self.min = 0.1
|
||||
|
||||
|
||||
class TestCase1(TestClipOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (8, 16, 8)
|
||||
self.max = 0.7
|
||||
self.min = 0
|
||||
|
||||
|
||||
class TestCase2(TestClipOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (8, 16)
|
||||
self.max = 1
|
||||
self.min = 0
|
||||
|
||||
|
||||
class TestCase3(TestClipOp):
|
||||
def initTestCase(self):
|
||||
self.shape = (4, 8, 16)
|
||||
self.max = 0.7
|
||||
self.min = 0.2
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue