Merge pull request #16346 from phlrain/add_floordiv_and_mod
add elementwise floordiv, modrevert-16190-refine_parallel_executor
commit
e5478ab5c8
@ -0,0 +1,38 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h"
|
||||
#include <string>
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
class ElementwiseFloorDivOpMaker : public ElementwiseOpMaker {
|
||||
protected:
|
||||
std::string GetName() const override { return "FloorDiv"; }
|
||||
std::string GetEquation() const override { return "Out = X // Y"; }
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_WITHOUT_GRADIENT(elementwise_floordiv, ops::ElementwiseOp,
|
||||
ops::ElementwiseFloorDivOpMaker);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
elementwise_floordiv,
|
||||
ops::ElementwiseFloorDivKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::ElementwiseFloorDivKernel<paddle::platform::CPUDeviceContext,
|
||||
int64_t>);
|
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_floordiv_op.h"
|
||||
#include "paddle/fluid/platform/float16.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
elementwise_floordiv,
|
||||
ops::ElementwiseFloorDivKernel<plat::CUDADeviceContext, int>,
|
||||
ops::ElementwiseFloorDivKernel<plat::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,55 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/fluid/framework/eigen.h"
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
|
||||
#include "paddle/fluid/operators/math/blas.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
struct FloorDivFunctor {
|
||||
inline HOSTDEVICE T operator()(T a, T b) const { return a / b; }
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
void elementwise_floor_div(const framework::ExecutionContext &ctx,
|
||||
const framework::Tensor *x,
|
||||
const framework::Tensor *y, framework::Tensor *z) {
|
||||
int axis = ctx.Attr<int>("axis");
|
||||
ElementwiseComputeEx<FloorDivFunctor<T>, DeviceContext, T>(
|
||||
ctx, x, y, axis, FloorDivFunctor<T>(), z);
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ElementwiseFloorDivKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *x = ctx.Input<framework::LoDTensor>("X");
|
||||
auto *y = ctx.Input<framework::LoDTensor>("Y");
|
||||
auto *z = ctx.Output<framework::LoDTensor>("Out");
|
||||
|
||||
z->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
// dtype of x and y is int64 or int32
|
||||
elementwise_floor_div<DeviceContext, T>(ctx, x, y, z);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,36 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
|
||||
#include <string>
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
class ElementwiseModOpMaker : public ElementwiseOpMaker {
|
||||
protected:
|
||||
std::string GetName() const override { return "Mod"; }
|
||||
std::string GetEquation() const override { return "Out = X % Y"; }
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(elementwise_mod, ops::ElementwiseOp,
|
||||
ops::ElementwiseModOpMaker);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
elementwise_mod,
|
||||
ops::ElementwiseModKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::ElementwiseModKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
|
||||
#include "paddle/fluid/platform/float16.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
elementwise_mod, ops::ElementwiseModKernel<plat::CUDADeviceContext, int>,
|
||||
ops::ElementwiseModKernel<plat::CUDADeviceContext, int64_t>);
|
@ -0,0 +1,55 @@
|
||||
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/fluid/framework/eigen.h"
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
|
||||
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
|
||||
#include "paddle/fluid/operators/math/blas.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
struct ModFunctor {
|
||||
inline HOSTDEVICE T operator()(T a, T b) const { return a % b; }
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
void elementwise_mod(const framework::ExecutionContext &ctx,
|
||||
const framework::Tensor *x, const framework::Tensor *y,
|
||||
framework::Tensor *z) {
|
||||
int axis = ctx.Attr<int>("axis");
|
||||
ElementwiseComputeEx<ModFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
|
||||
ModFunctor<T>(), z);
|
||||
}
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ElementwiseModKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||
auto *x = ctx.Input<framework::LoDTensor>("X");
|
||||
auto *y = ctx.Input<framework::LoDTensor>("Y");
|
||||
auto *z = ctx.Output<framework::LoDTensor>("Out");
|
||||
|
||||
z->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
// dtype of x and y is int64 or int32
|
||||
elementwise_mod<DeviceContext, T>(ctx, x, y, z);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,69 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
from op_test import OpTest
|
||||
|
||||
import random
|
||||
|
||||
|
||||
class TestElementwiseModOp(OpTest):
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = False
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_floordiv"
|
||||
self.dtype = np.int32
|
||||
self.axis = -1
|
||||
self.init_dtype()
|
||||
self.init_input_output()
|
||||
self.init_kernel_type()
|
||||
self.init_axis()
|
||||
|
||||
self.inputs = {
|
||||
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
|
||||
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
|
||||
}
|
||||
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
|
||||
self.outputs = {'Out': self.out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def init_input_output(self):
|
||||
self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
|
||||
self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
|
||||
self.out = np.floor_divide(self.x, self.y)
|
||||
|
||||
def init_dtype(self):
|
||||
pass
|
||||
|
||||
def init_axis(self):
|
||||
pass
|
||||
|
||||
|
||||
class TestElementwiseModOp_scalar(TestElementwiseModOp):
|
||||
def init_input_output(self):
|
||||
scale_x = random.randint(0, 100000000)
|
||||
scale_y = random.randint(1, 100000000)
|
||||
self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
|
||||
self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
|
||||
self.out = np.floor_divide(self.x, self.y)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,69 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
from op_test import OpTest
|
||||
|
||||
import random
|
||||
|
||||
|
||||
class TestElementwiseModOp(OpTest):
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = False
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mod"
|
||||
self.dtype = np.int32
|
||||
self.axis = -1
|
||||
self.init_dtype()
|
||||
self.init_input_output()
|
||||
self.init_kernel_type()
|
||||
self.init_axis()
|
||||
|
||||
self.inputs = {
|
||||
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
|
||||
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
|
||||
}
|
||||
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
|
||||
self.outputs = {'Out': self.out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def init_input_output(self):
|
||||
self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
|
||||
self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
|
||||
self.out = np.mod(self.x, self.y)
|
||||
|
||||
def init_dtype(self):
|
||||
pass
|
||||
|
||||
def init_axis(self):
|
||||
pass
|
||||
|
||||
|
||||
class TestElementwiseModOp_scalar(TestElementwiseModOp):
|
||||
def init_input_output(self):
|
||||
scale_x = random.randint(0, 100000000)
|
||||
scale_y = random.randint(1, 100000000)
|
||||
self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
|
||||
self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
|
||||
self.out = np.mod(self.x, self.y)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue