|
|
|
@ -15,7 +15,8 @@ def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
|
|
|
|
|
index = indices[nidx, cidx, h, w]
|
|
|
|
|
hidx = (index - index % out_W) / out_W
|
|
|
|
|
widx = index % out_W
|
|
|
|
|
out[nidx, cidx, int(hidx), int(widx)] = input[nidx, cidx, h, w]
|
|
|
|
|
out[nidx, cidx, int(hidx), int(widx)] = \
|
|
|
|
|
input[nidx, cidx, h, w]
|
|
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
@ -26,23 +27,31 @@ class TestUnpoolOp(OpTest):
|
|
|
|
|
self.init_test_case()
|
|
|
|
|
pre_input = np.random.random(self.shape).astype("float32")
|
|
|
|
|
N, C, H, W = pre_input.shape
|
|
|
|
|
H_out = (H - self.ksize[0] + 2 * self.paddings[0]) / self.strides[0] + 1
|
|
|
|
|
W_out = (W - self.ksize[1] + 2 * self.paddings[1]) / self.strides[1] + 1
|
|
|
|
|
H_out = (H - self.ksize[0] + 2 * self.paddings[0]) / \
|
|
|
|
|
self.strides[0] + 1
|
|
|
|
|
W_out = (W - self.ksize[1] + 2 * self.paddings[1]) / \
|
|
|
|
|
self.strides[1] + 1
|
|
|
|
|
input = np.zeros((N, C, H_out, W_out))
|
|
|
|
|
indices = np.zeros((N, C, H_out, W_out))
|
|
|
|
|
for i in xrange(H_out):
|
|
|
|
|
for j in xrange(W_out):
|
|
|
|
|
r_start = np.max((i * self.strides[0] - self.paddings[0], 0))
|
|
|
|
|
r_end = np.min((i * self.strides[0] + self.ksize[0] - self.paddings[0], H))
|
|
|
|
|
r_end = np.min((i * self.strides[0] + self.ksize[0] - \
|
|
|
|
|
self.paddings[0], H))
|
|
|
|
|
c_start = np.max((j * self.strides[1] - self.paddings[1], 0))
|
|
|
|
|
c_end = np.min((j * self.strides[1] + self.ksize[1] - self.paddings[1], W))
|
|
|
|
|
c_end = np.min((j * self.strides[1] + self.ksize[1] - \
|
|
|
|
|
self.paddings[1], W))
|
|
|
|
|
for nidx in xrange(N):
|
|
|
|
|
for cidx in xrange(C):
|
|
|
|
|
x_masked = pre_input[nidx, cidx, r_start:r_end, c_start:c_end]
|
|
|
|
|
x_masked = pre_input[nidx, cidx, r_start:r_end, \
|
|
|
|
|
c_start:c_end]
|
|
|
|
|
input[nidx, cidx, i, j] = x_masked.max()
|
|
|
|
|
arg = x_masked.argmax()
|
|
|
|
|
indices[nidx, cidx, i, j] = (r_start + arg / self.ksize[1]) * W + c_start + arg % self.ksize[1]
|
|
|
|
|
output = self.Unpool2d_forward_naive(input, indices, self.ksize, self.strides, self.paddings).astype("float32")
|
|
|
|
|
indices[nidx, cidx, i, j] = \
|
|
|
|
|
(r_start + arg / self.ksize[1]) * W + \
|
|
|
|
|
c_start + arg % self.ksize[1]
|
|
|
|
|
output = self.Unpool2d_forward_naive(input, indices, self.ksize, \
|
|
|
|
|
self.strides, self.paddings).astype("float32")
|
|
|
|
|
self.inputs = {'X': input.astype('float32'),
|
|
|
|
|
'Y': indices.astype('int16')}
|
|
|
|
|
self.attrs = {
|
|
|
|
@ -57,7 +66,7 @@ class TestUnpoolOp(OpTest):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.5)
|
|
|
|
|
self.check_grad(['X'], 'Out')
|
|
|
|
|
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
self.Unpool2d_forward_naive = unpool2dmax_forward_naive
|
|
|
|
|