initial imperative

test=develop
revert-14398-imperative
Xin Pan 6 years ago
parent 4d0df1fea7
commit e5d64fd4d1

@ -1,3 +1,3 @@
cc_library(layer SRCS layer.cc DEPS proto_desc)
cc_library(layer SRCS layer.cc DEPS proto_desc operator)
cc_library(tracer SRCS tracer.cc DEPS proto_desc)
cc_library(engine SRCS engine.cc)

File diff suppressed because it is too large Load Diff

@ -14,8 +14,10 @@
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
@ -27,26 +29,64 @@ class OpBase;
class VarBase {
public:
VarBase() {}
virtual ~VarBase() {}
VarBase()
: pre_op_(nullptr),
pre_op_out_idx_(-1),
var_desc_(nullptr),
var_(nullptr),
grads_(nullptr) {}
virtual ~VarBase() {
LOG(ERROR) << "deleting var";
LOG(ERROR) << "done deleting var";
}
void ApplyGrad(framework::Scope* scope, framework::Variable* grad);
void RunBackward(framework::Scope* scope);
framework::LoDTensor& Grad();
OpBase* pre_op_;
int pre_op_out_idx_;
framework::VarDesc* var_desc_;
framework::Variable* var_;
framework::Variable* grads_;
};
class OpBase {
public:
OpBase()
: input_vars_(new std::vector<VarBase*>()),
output_vars_(new std::vector<VarBase*>()) {}
output_vars_(new std::vector<VarBase*>()),
pre_ops_(new std::vector<OpBase*>()),
pre_ops_out_idx_(new std::vector<int>()),
op_desc_(nullptr),
grad_op_desc_(nullptr) {}
virtual ~OpBase() {
delete input_vars_;
delete output_vars_;
delete pre_ops_;
delete pre_ops_out_idx_;
if (grad_op_desc_) delete grad_op_desc_;
if (grad_to_var_) delete grad_to_var_;
}
std::vector<framework::Variable*> ApplyGrad(framework::Scope* scope);
std::vector<VarBase*>* input_vars_;
std::vector<VarBase*>* output_vars_;
std::vector<OpBase*>* pre_ops_;
std::vector<int>* pre_ops_out_idx_;
framework::OpDesc* op_desc_;
framework::OpDesc* grad_op_desc_;
std::unordered_map<std::string, std::string>* grad_to_var_;
framework::BlockDesc* block_;
};
class Layer {
@ -58,7 +98,7 @@ class Layer {
return vars;
}
virtual void Backward() { LOG(ERROR) << "backward at cpp."; }
virtual void Backward() { LOG(ERROR) << "To support customize"; }
};
} // namespace imperative

@ -27,6 +27,20 @@
namespace paddle {
namespace imperative {
void CreateGradOp(const framework::OpDesc& op_desc,
const std::unordered_set<std::string>& no_grad_set,
const std::vector<framework::BlockDesc*>& grad_sub_block,
framework::OpDesc** grad_op_desc,
std::unordered_map<std::string, std::string>* grad_to_var) {
std::vector<std::unique_ptr<framework::OpDesc>> grad_op_descs =
framework::OpInfoMap::Instance()
.Get(op_desc.Type())
.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
PADDLE_ENFORCE(grad_op_descs.size() == 1, "Only support 1 grad op now.");
// TODO(panyx0718): Leak?
*grad_op_desc = grad_op_descs[0].release();
}
class Tracer {
public:
Tracer() {}
@ -44,6 +58,7 @@ class Tracer {
for (VarBase* input : inputs) {
const std::string vname = input->var_desc_->Name();
framework::Variable* var = scope_->Var(vname);
input->var_ = var;
if (!var->IsInitialized()) {
framework::VarDesc* var_desc = block_->FindVar(vname);
if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
@ -52,11 +67,17 @@ class Tracer {
LOG(ERROR) << "tracer doesn't support yet";
}
}
if (input->pre_op_) {
op->pre_ops_->push_back(input->pre_op_);
op->pre_ops_out_idx_->push_back(input->pre_op_out_idx_);
} else {
op->pre_ops_->push_back(nullptr);
}
}
*op->output_vars_ = outputs;
for (auto output : outputs) {
const std::string vname = output->var_desc_->Name();
for (size_t i = 0; i < outputs.size(); ++i) {
const std::string vname = outputs[i]->var_desc_->Name();
framework::Variable* var = scope_->Var(vname);
if (!var->IsInitialized()) {
framework::VarDesc* var_desc = block_->FindVar(vname);
@ -66,9 +87,18 @@ class Tracer {
LOG(ERROR) << "tracer doesn't support yet";
}
}
output->pre_op_ = op;
outputs[i]->var_ = var;
outputs[i]->pre_op_ = op;
outputs[i]->pre_op_out_idx_ = i;
}
op_base->Run(*scope_, platform::CPUPlace());
framework::OpDesc* grad_op_desc;
auto grad_to_var = new std::unordered_map<std::string, std::string>();
CreateGradOp(*op_desc, {}, {block_}, &grad_op_desc, grad_to_var);
op->grad_op_desc_ = grad_op_desc;
op->grad_to_var_ = grad_to_var;
op->block_ = block_;
}
void SetScope(framework::Scope* scope) { scope_ = scope; }

@ -1,5 +1,5 @@
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler)
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler layer)
set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc async_executor_py.cc imperative.cc)
if(WITH_PYTHON)

@ -42,6 +42,11 @@ class PyOpBase : public imperative::OpBase {
using imperative::OpBase::OpBase; // Inherit constructors
};
class PyVarBase : public imperative::VarBase {
public:
using imperative::VarBase::VarBase; // Inherit constructors
};
void BindTracer(pybind11::module* m);
} // namespace pybind

@ -34,6 +34,7 @@ limitations under the License. */
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/version.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
@ -101,8 +102,13 @@ PYBIND11_MODULE(core, m) {
BindException(&m);
py::class_<imperative::VarBase>(m, "VarBase",
R"DOC()DOC")
py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
.def(py::init<>())
.def("_run_backward",
[](imperative::VarBase &self, framework::Scope *scope) {
self.RunBackward(scope);
})
.def("_grad", &imperative::VarBase::Grad)
.def_property(
"desc",
[](const imperative::VarBase &self) { return self.var_desc_; },
@ -111,13 +117,14 @@ PYBIND11_MODULE(core, m) {
},
py::return_value_policy::reference);
py::class_<imperative::OpBase, PyOpBase>(m, "OpBase",
R"DOC()DOC")
py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
.def(py::init<>())
.def_property(
"desc", [](const imperative::OpBase &self) { return self.op_desc_; },
[](imperative::OpBase &self, framework::OpDesc *op_desc) {
self.op_desc_ = op_desc;
if (op_desc) {
self.op_desc_ = op_desc;
}
},
py::return_value_policy::reference);

@ -276,6 +276,7 @@ class Variable(core.VarBase):
stop_gradient=False,
is_data=False,
**kwargs):
core.VarBase.__init__(self)
self.block = block
self.error_clip = error_clip
@ -361,6 +362,12 @@ class Variable(core.VarBase):
tensor = core.get_variable_tensor(scope, self.desc.name())
return np.array(tensor)
def backward(self, scope):
self._run_backward(scope)
def grad(self):
return np.array(self._grad())
def __str__(self):
return self.to_string(True)
@ -983,6 +990,7 @@ class Block(object):
self.desc = program.desc.block(idx)
self.vars = collections.OrderedDict() # var_name --> var
self.ops = list() # operator list
self._op_descs = list()
self.program = program
self.removed_vars = collections.OrderedDict()
@ -1238,13 +1246,12 @@ class Block(object):
if _in_imperative_mode():
op_desc = core.OpDesc()
op = Operator(block=self, desc=op_desc, *args, **kwargs)
sys.stderr.write('%s %s!!!\n' % (type(op.inputs), type(op.outputs)))
_imperative_tracer().trace(op, op.inputs, op.outputs)
return
op_desc = self.desc.append_op()
op = Operator(block=self, desc=op_desc, *args, **kwargs)
else:
op_desc = self.desc.append_op()
op = Operator(block=self, desc=op_desc, *args, **kwargs)
self.ops.append(op)
self._op_descs.append(op_desc)
return op
def _insert_op(self, index, *args, **kwargs):

@ -26,6 +26,7 @@ class MyLayer(fluid.imperative.PyLayer):
def forward(self, inputs):
x = fluid.layers.relu(inputs[0])
self._x_for_debug = x
return [fluid.layers.elementwise_mul(x, x)]
@ -43,6 +44,8 @@ class TestImperative(unittest.TestCase):
x = l(np.array([1.0, 2.0, -1.0], dtype=np.float32))[0]
self.assertIsNotNone(x)
sys.stderr.write("%s output: %s\n" % (x, x.numpy(scope=l._scope)))
x.backward(l._scope)
sys.stderr.write("grad %s\n" % l._x_for_debug.grad())
if __name__ == '__main__':

Loading…
Cancel
Save