|
|
|
@ -4,7 +4,33 @@ import sys
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestConcatOp(OpTest):
|
|
|
|
|
def to_abs_lod(lod):
|
|
|
|
|
if len(lod) == 0 or len(lod) == 1:
|
|
|
|
|
return lod
|
|
|
|
|
import copy
|
|
|
|
|
new_lod = copy.deepcopy(lod)
|
|
|
|
|
for idx, val in enumerate(lod[0]):
|
|
|
|
|
new_lod[0][idx] = lod[1][val]
|
|
|
|
|
return new_lod
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def seq_concat(inputs, level):
|
|
|
|
|
lod0 = inputs['X'][0][1][1]
|
|
|
|
|
lod1 = inputs['X'][1][1][1]
|
|
|
|
|
x0 = inputs['X'][0][1][0]
|
|
|
|
|
x1 = inputs['X'][1][1][0]
|
|
|
|
|
level_idx = len(lod0) - level - 1
|
|
|
|
|
outs = []
|
|
|
|
|
for i in range(len(lod0[level_idx]) - 1):
|
|
|
|
|
sub_x0 = x0[to_abs_lod(lod0)[level_idx][i]:to_abs_lod(lod0)[level_idx][
|
|
|
|
|
i + 1], :]
|
|
|
|
|
sub_x1 = x1[to_abs_lod(lod1)[level_idx][i]:to_abs_lod(lod1)[level_idx][
|
|
|
|
|
i + 1], :]
|
|
|
|
|
outs.append(np.concatenate((sub_x0, sub_x1), axis=0))
|
|
|
|
|
return np.concatenate(outs, axis=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSeqConcatOp(OpTest):
|
|
|
|
|
def set_data(self):
|
|
|
|
|
# two level, batch size is 3
|
|
|
|
|
x0 = np.random.random((4, 6, 3)).astype('float32')
|
|
|
|
@ -15,13 +41,7 @@ class TestConcatOp(OpTest):
|
|
|
|
|
level = 1
|
|
|
|
|
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
|
|
|
|
self.attrs = {'axis': axis, 'level': level}
|
|
|
|
|
outs = []
|
|
|
|
|
for i in range(4):
|
|
|
|
|
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
|
|
|
|
|
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
|
|
|
|
|
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Out': np.concatenate(outs, axis=0)}
|
|
|
|
|
self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)}
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "sequence_concat"
|
|
|
|
@ -34,46 +54,50 @@ class TestConcatOp(OpTest):
|
|
|
|
|
self.check_grad(['x0'], 'Out')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestConcatOpDiffLod(TestConcatOp):
|
|
|
|
|
class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp):
|
|
|
|
|
def set_data(self):
|
|
|
|
|
# two level, batch size is 3
|
|
|
|
|
x0 = np.random.random((4, 6, 3)).astype('float32')
|
|
|
|
|
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
|
|
|
|
|
x1 = np.random.random((5, 6, 3)).astype('float32')
|
|
|
|
|
lod1 = [[0, 3, 5], [0, 1, 2, 3, 5]]
|
|
|
|
|
x1 = np.random.random((7, 6, 3)).astype('float32')
|
|
|
|
|
lod1 = [[0, 2, 4], [0, 1, 3, 5, 7]]
|
|
|
|
|
axis = 0
|
|
|
|
|
level = 1
|
|
|
|
|
level = 0
|
|
|
|
|
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
|
|
|
|
self.attrs = {'axis': axis, 'level': level}
|
|
|
|
|
outs = []
|
|
|
|
|
for i in range(4):
|
|
|
|
|
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
|
|
|
|
|
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
|
|
|
|
|
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
|
|
|
|
|
out_lod = [[0, 2, 4], [0, 2, 5, 8, 11]]
|
|
|
|
|
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Out': np.concatenate(outs, axis=0)}
|
|
|
|
|
|
|
|
|
|
class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp):
|
|
|
|
|
def set_data(self):
|
|
|
|
|
# two level, batch size is 3
|
|
|
|
|
x0 = np.random.random((4, 6, 3)).astype('float32')
|
|
|
|
|
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
|
|
|
|
|
x1 = np.random.random((7, 6, 3)).astype('float32')
|
|
|
|
|
lod1 = [[0, 3, 4], [0, 1, 3, 5, 7]]
|
|
|
|
|
axis = 0
|
|
|
|
|
level = 1
|
|
|
|
|
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
|
|
|
|
self.attrs = {'axis': axis, 'level': level}
|
|
|
|
|
out_lod = [[0, 5, 8], [0, 1, 2, 3, 5, 7, 8, 9, 11]]
|
|
|
|
|
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestConcatOpLevelZero(TestConcatOp):
|
|
|
|
|
class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp):
|
|
|
|
|
def set_data(self):
|
|
|
|
|
# two level, batch size is 3
|
|
|
|
|
x0 = np.random.random((4, 3, 4)).astype('float32')
|
|
|
|
|
lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]]
|
|
|
|
|
x1 = np.random.random((5, 3, 4)).astype('float32')
|
|
|
|
|
lod1 = [[0, 3, 5], [0, 1, 3, 4, 5]]
|
|
|
|
|
lod0 = [[0, 1, 2, 3, 4]]
|
|
|
|
|
x1 = np.random.random((7, 3, 4)).astype('float32')
|
|
|
|
|
lod1 = [[0, 1, 3, 5, 7]]
|
|
|
|
|
axis = 0
|
|
|
|
|
level = 0
|
|
|
|
|
self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]}
|
|
|
|
|
self.attrs = {'axis': axis, 'level': level}
|
|
|
|
|
outs = []
|
|
|
|
|
for i in range(2):
|
|
|
|
|
sub_x0 = x0[lod0[level][i]:lod0[level][i + 1], :]
|
|
|
|
|
sub_x1 = x1[lod1[level][i]:lod1[level][i + 1], :]
|
|
|
|
|
outs.append(np.concatenate((sub_x0, sub_x1), axis=axis))
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Out': np.concatenate(outs, axis=0)}
|
|
|
|
|
out_lod = [[0, 2, 5, 8, 11]]
|
|
|
|
|
self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
sys.exit(0)
|
|
|
|
|
unittest.main()
|
|
|
|
|