|
|
|
@ -36,10 +36,22 @@ struct GeluFunctor {
|
|
|
|
|
void operator()(Device d, X x, Out out, bool approximate) const {
|
|
|
|
|
if (approximate) {
|
|
|
|
|
// gelu(x) = 0.5 * x * (1 + tanh(sqrt(2 / \pi) * (x + 0.044715 * x^{3})))
|
|
|
|
|
auto temp = (static_cast<T>(M_2_SQRTPI * M_SQRT1_2) *
|
|
|
|
|
(x + static_cast<T>(0.044715) * x.cube()))
|
|
|
|
|
.tanh();
|
|
|
|
|
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
|
|
|
|
|
if (std::is_same<T, platform::float16>::value) {
|
|
|
|
|
VLOG(4) << "cast from float16 to float before computing";
|
|
|
|
|
auto casted_x = x.template cast<float>();
|
|
|
|
|
auto temp =
|
|
|
|
|
(static_cast<float>(M_2_SQRTPI * M_SQRT1_2) *
|
|
|
|
|
(casted_x + static_cast<float>(0.044715) * casted_x.cube()))
|
|
|
|
|
.tanh();
|
|
|
|
|
out.device(d) = (casted_x * static_cast<float>(0.5) *
|
|
|
|
|
(static_cast<float>(1) + temp))
|
|
|
|
|
.template cast<T>();
|
|
|
|
|
} else {
|
|
|
|
|
auto temp = (static_cast<T>(M_2_SQRTPI * M_SQRT1_2) *
|
|
|
|
|
(x + static_cast<T>(0.044715) * x.cube()))
|
|
|
|
|
.tanh();
|
|
|
|
|
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
|
|
|
|
|
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
|
|
|
|
@ -60,8 +72,17 @@ struct GeluFunctor {
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
// gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))
|
|
|
|
|
auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
|
|
|
|
|
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
|
|
|
|
|
if (std::is_same<T, platform::float16>::value) {
|
|
|
|
|
VLOG(4) << "cast from float16 to float before computing";
|
|
|
|
|
auto casted_x = x.template cast<float>();
|
|
|
|
|
auto temp = (casted_x * static_cast<float>(M_SQRT1_2)).erf();
|
|
|
|
|
out.device(d) = (casted_x * static_cast<float>(0.5) *
|
|
|
|
|
(static_cast<float>(1) + temp))
|
|
|
|
|
.template cast<T>();
|
|
|
|
|
} else {
|
|
|
|
|
auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
|
|
|
|
|
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -72,13 +93,32 @@ struct GeluGradFunctor {
|
|
|
|
|
template <typename Device, typename X, typename dOut, typename dX>
|
|
|
|
|
void operator()(Device d, X x, dOut dout, dX dx, bool approximate) const {
|
|
|
|
|
if (approximate) {
|
|
|
|
|
const T kAlpha = static_cast<T>(M_2_SQRTPI * M_SQRT1_2);
|
|
|
|
|
const T kBeta = kAlpha * static_cast<T>(0.044715) * static_cast<T>(3);
|
|
|
|
|
const auto y =
|
|
|
|
|
(kAlpha * ((static_cast<T>(0.044715) * x.cube()) + x)).tanh();
|
|
|
|
|
dx.device(d) = static_cast<T>(0.5) * dout *
|
|
|
|
|
(static_cast<T>(1) + y +
|
|
|
|
|
(x - x * y.square()) * (kAlpha + kBeta * x.square()));
|
|
|
|
|
if (std::is_same<T, platform::float16>::value) {
|
|
|
|
|
VLOG(4) << "cast from float16 to float before computing";
|
|
|
|
|
auto casted_x = x.template cast<float>();
|
|
|
|
|
auto casted_dout = dout.template cast<float>();
|
|
|
|
|
|
|
|
|
|
const float kAlpha = static_cast<float>(M_2_SQRTPI * M_SQRT1_2);
|
|
|
|
|
const float kBeta =
|
|
|
|
|
kAlpha * static_cast<float>(0.044715) * static_cast<float>(3);
|
|
|
|
|
const auto y =
|
|
|
|
|
(kAlpha *
|
|
|
|
|
((static_cast<float>(0.044715) * casted_x.cube()) + casted_x))
|
|
|
|
|
.tanh();
|
|
|
|
|
dx.device(d) = (static_cast<float>(0.5) * casted_dout *
|
|
|
|
|
(static_cast<float>(1) + y +
|
|
|
|
|
(casted_x - casted_x * y.square()) *
|
|
|
|
|
(kAlpha + kBeta * casted_x.square())))
|
|
|
|
|
.template cast<T>();
|
|
|
|
|
} else {
|
|
|
|
|
const T kAlpha = static_cast<T>(M_2_SQRTPI * M_SQRT1_2);
|
|
|
|
|
const T kBeta = kAlpha * static_cast<T>(0.044715) * static_cast<T>(3);
|
|
|
|
|
const auto y =
|
|
|
|
|
(kAlpha * ((static_cast<T>(0.044715) * x.cube()) + x)).tanh();
|
|
|
|
|
dx.device(d) = static_cast<T>(0.5) * dout *
|
|
|
|
|
(static_cast<T>(1) + y +
|
|
|
|
|
(x - x * y.square()) * (kAlpha + kBeta * x.square()));
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
#if defined(PADDLE_WITH_MKLML) && !defined(_WIN32) && !defined(__APPLE__) && \
|
|
|
|
|
!defined(__OSX__) && !defined(PADDLE_WITH_CUDA)
|
|
|
|
@ -117,13 +157,26 @@ struct GeluGradFunctor {
|
|
|
|
|
#else
|
|
|
|
|
// gelu_grad(x) = dout * 0.5 * (1 + erf(x / sqrt(2)) + x * sqrt(2 / pi) *
|
|
|
|
|
// exp(- x^2 / 2)
|
|
|
|
|
auto first =
|
|
|
|
|
static_cast<T>(0.5) *
|
|
|
|
|
(static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));
|
|
|
|
|
|
|
|
|
|
auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
|
|
|
|
|
(-static_cast<T>(0.5) * x.square()).exp();
|
|
|
|
|
dx.device(d) = dout * (first + second);
|
|
|
|
|
if (std::is_same<T, platform::float16>::value) {
|
|
|
|
|
VLOG(4) << "cast from float16 to float before computing";
|
|
|
|
|
auto casted_x = x.template cast<float>();
|
|
|
|
|
auto casted_dout = dout.template cast<float>();
|
|
|
|
|
auto first = static_cast<float>(0.5) *
|
|
|
|
|
(static_cast<float>(1) +
|
|
|
|
|
((casted_x * static_cast<float>(M_SQRT1_2)).erf()));
|
|
|
|
|
auto second = static_cast<float>(0.5 * M_2_SQRTPI * M_SQRT1_2) *
|
|
|
|
|
casted_x *
|
|
|
|
|
(-static_cast<float>(0.5) * casted_x.square()).exp();
|
|
|
|
|
dx.device(d) = (casted_dout * (first + second)).template cast<T>();
|
|
|
|
|
} else {
|
|
|
|
|
auto first =
|
|
|
|
|
static_cast<T>(0.5) *
|
|
|
|
|
(static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));
|
|
|
|
|
|
|
|
|
|
auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
|
|
|
|
|
(-static_cast<T>(0.5) * x.square()).exp();
|
|
|
|
|
dx.device(d) = dout * (first + second);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|