Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into hsigmoid_gpu

release/0.11.0
peterzhang2029 7 years ago
commit e6b540eacf

@ -459,11 +459,11 @@ function(py_test TARGET_NAME)
if(WITH_TESTING)
set(options STATIC static SHARED shared)
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python
${PYTHON_EXECUTABLE} ${py_test_SRCS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endfunction()

@ -1,108 +0,0 @@
经典的线性回归任务
==================
PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍将向你展示如何利用PaddlePaddle来解决一个经典的线性回归问题。
任务简介
--------
我们展示如何用PaddlePaddle解决 `单变量的线性回归 <https://www.baidu.com/s?wd=单变量线性回归>`_ 问题。线性回归的输入是一批点 `(x, y)` ,其中 `y = wx + b + ε` 而 ε 是一个符合高斯分布的随机变量。线性回归的输出是从这批点估计出来的参数 `w``b`
一个例子是房产估值。我们假设房产的价格y是其大小x的一个线性函数那么我们可以通过收集市场上房子的大小和价格用来估计线性函数的参数w 和 b。
准备数据
-----------
假设变量 `x``y` 的真实关系为: `y = 2x + 0.3 + ε`这里展示如何使用观测数据来拟合这一线性关系。首先Python代码将随机产生2000个观测点作为线性回归的输入。下面脚本符合PaddlePaddle期待的读取数据的Python程序的模式。
.. code-block:: python
# dataprovider.py
from paddle.trainer.PyDataProvider2 import *
import random
# 定义输入数据的类型: 2个浮点数
@provider(input_types=[dense_vector(1), dense_vector(1)],use_seq=False)
def process(settings, input_file):
for i in xrange(2000):
x = random.random()
yield [x], [2*x+0.3]
训练模型
-----------
为了还原 `y = 2x + 0.3`,我们先从一条随机的直线 `y' = wx + b` 开始,然后利用观测数据调整 `w``b` 使得 `y'``y` 的差距不断减小,最终趋于接近。这个过程就是模型的训练过程,而 `w``b` 就是模型的参数,即我们的训练目标。
在PaddlePaddle里该模型的网络配置如下。
.. code-block:: python
# trainer_config.py
from paddle.trainer_config_helpers import *
# 1. 定义数据来源调用上面的process函数获得观测数据
data_file = 'empty.list'
with open(data_file, 'w') as f: f.writelines(' ')
define_py_data_sources2(train_list=data_file, test_list=None,
module='dataprovider', obj='process',args={})
# 2. 学习算法。控制如何改变模型参数 w 和 b
settings(batch_size=12, learning_rate=1e-3, learning_method=MomentumOptimizer())
# 3. 神经网络配置
x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1)
# 线性计算网络层: ȳ = wx + b
ȳ = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
# 计算误差函数,即 ȳ 和真实 y 之间的距离
cost = square_error_cost(input= ȳ, label=y)
outputs(cost)
这段简短的配置展示了PaddlePaddle的基本用法
- 第一部分定义了数据输入。一般情况下PaddlePaddle先从一个文件列表里获得数据文件地址然后交给用户自定义的函数例如上面的 `process`函数)进行读入和预处理从而得到真实输入。本文中由于输入数据是随机生成的不需要读输入文件,所以放一个空列表(`empty.list`)即可。
- 第二部分主要是选择学习算法它定义了模型参数改变的规则。PaddlePaddle提供了很多优秀的学习算法这里使用一个基于momentum的随机梯度下降(SGD)算法,该算法每批量(batch)读取12个采样数据进行随机梯度计算来更新更新。
- 最后一部分是神经网络的配置。由于PaddlePaddle已经实现了丰富的网络层所以很多时候你需要做的只是定义正确的网络层并把它们连接起来。这里使用了三种网络单元
- **数据层**:数据层 `data_layer` 是神经网络的入口,它读入数据并将它们传输到接下来的网络层。这里数据层有两个,分别对应于变量 `x``y`
- **全连接层**:全连接层 `fc_layer` 是基础的计算单元这里利用它建模变量之间的线性关系。计算单元是神经网络的核心PaddlePaddle支持大量的计算单元和任意深度的网络连接从而可以拟合任意的函数来学习复杂的数据关系。
- **回归误差代价层**:回归误差代价层 `square_error_cost` 是众多误差代价函数层的一种,它们在训练过程作为网络的出口,用来计算模型的误差,是模型参数优化的目标函数。
定义了网络结构并保存为 `trainer_config.py` 之后,运行以下训练命令:
.. code-block:: bash
paddle train --config=trainer_config.py --save_dir=./output --num_passes=30
PaddlePaddle将在观测数据集上迭代训练30轮并将每轮的模型结果存放在 `./output` 路径下。从输出日志可以看到,随着轮数增加误差代价函数的输出在不断的减小,这意味着模型在训练数据上不断的改进,直到逼近真实解:` y = 2x + 0.3 `
模型检验
-----------
训练完成后,我们希望能够检验模型的好坏。一种常用的做法是用学习的模型对另外一组测试数据进行预测,评价预测的效果。在这个例子中,由于已经知道了真实答案,我们可以直接观察模型的参数是否符合预期来进行检验。
PaddlePaddle将每个模型参数作为一个numpy数组单独存为一个文件所以可以利用如下方法读取模型的参数。
.. code-block:: python
import numpy as np
import os
def load(file_name):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32)
print 'w=%.6f, b=%.6f' % (load('output/pass-00029/w'), load('output/pass-00029/b'))
# w=1.999743, b=0.300137
.. image:: ./parameters.png
:align: center
:scale: 80 %
从图中可以看到,虽然 `w``b` 都使用随机值初始化,但在起初的几轮训练中它们都在快速逼近真实值,并且后续仍在不断改进,使得最终得到的模型几乎与真实模型一致。
这样我们用PaddlePaddle解决了单变量线性回归问题 包括数据输入、模型训练和最后的结果验证。

@ -1,101 +0,0 @@
Simple Linear Regression
========================
PaddlePaddle is a deep learning platform open-sourced by Baidu. With PaddlePaddle, you can easily train a classic neural network within a couple lines of configuration, or you can build sophisticated models that provide state-of-the-art performance on difficult learning tasks like sentiment analysis, machine translation, image caption and so on.
Problem Background
------------------
Now, to give you a hint of what using PaddlePaddle looks like, let's start with a fundamental learning problem - `simple linear regression <https://en.wikipedia.org/wiki/Simple_linear_regression>`_: you have observed a set of two-dimensional data points of ``X`` and ``Y``, where ``X`` is an explanatory variable and ``Y`` is corresponding dependent variable, and you want to recover the underlying correlation between ``X`` and ``Y``. Linear regression can be used in many practical scenarios. For example, ``X`` can be a variable about house size, and ``Y`` a variable about house price. You can build a model that captures relationship between them by observing real estate markets.
Prepare the Data
-----------------
Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's see how to recover this pattern only from observed data. Here is a piece of python code that feeds synthetic data to PaddlePaddle. The code is pretty self-explanatory, the only extra thing you need to add for PaddlePaddle is a definition of input data types.
.. code-block:: python
# dataprovider.py
from paddle.trainer.PyDataProvider2 import *
import random
# define data types of input: 2 real numbers
@provider(input_types=[dense_vector(1), dense_vector(1)],use_seq=False)
def process(settings, input_file):
for i in xrange(2000):
x = random.random()
yield [x], [2*x+0.3]
Train a NeuralNetwork
----------------------
To recover this relationship between ``X`` and ``Y``, we use a neural network with one layer of linear activation units and a square error cost layer. Don't worry if you are not familiar with these terminologies, it's just saying that we are starting from a random line ``Y' = wX + b`` , then we gradually adapt ``w`` and ``b`` to minimize the difference between ``Y'`` and ``Y``. Here is what it looks like in PaddlePaddle:
.. code-block:: python
# trainer_config.py
from paddle.trainer_config_helpers import *
# 1. read data. Suppose you saved above python code as dataprovider.py
data_file = 'empty.list'
with open(data_file, 'w') as f: f.writelines(' ')
define_py_data_sources2(train_list=data_file, test_list=None,
module='dataprovider', obj='process',args={})
# 2. learning algorithm
settings(batch_size=12, learning_rate=1e-3, learning_method=MomentumOptimizer())
# 3. Network configuration
x = data_layer(name='x', size=1)
y = data_layer(name='y', size=1)
y_predict = fc_layer(input=x, param_attr=ParamAttr(name='w'), size=1, act=LinearActivation(), bias_attr=ParamAttr(name='b'))
cost = square_error_cost(input=y_predict, label=y)
outputs(cost)
Some of the most fundamental usages of PaddlePaddle are demonstrated:
- The first part shows how to feed data into PaddlePaddle. In general cases, PaddlePaddle reads raw data from a list of files, and then do some user-defined process to get real input. In this case, we only need to create a placeholder file since we are generating synthetic data on the fly.
- The second part describes learning algorithm. It defines in what ways adjustments are made to model parameters. PaddlePaddle provides a rich set of optimizers, but a simple momentum based optimizer will suffice here, and it processes 12 data points each time.
- Finally, the network configuration. It usually is as simple as "stacking" layers. Three kinds of layers are used in this configuration:
- **Data Layer**: a network always starts with one or more data layers. They provide input data to the rest of the network. In this problem, two data layers are used respectively for ``X`` and ``Y``.
- **FC Layer**: FC layer is short for Fully Connected Layer, which connects all the input units to current layer and does the actual computation specified as activation function. Computation layers like this are the fundamental building blocks of a deeper model.
- **Cost Layer**: in training phase, cost layers are usually the last layers of the network. They measure the performance of current model, and provide guidence to adjust parameters.
Now that everything is ready, you can train the network with a simple command line call:
.. code-block:: bash
paddle train --config=trainer_config.py --save_dir=./output --num_passes=30
This means that PaddlePaddle will train this network on the synthectic dataset for 30 passes, and save all the models under path ``./output``. You will see from the messages printed out during training phase that the model cost is decreasing as time goes by, which indicates we are getting a closer guess.
Evaluate the Model
-------------------
Usually, a different dataset that left out during training phase should be used to evalute the models. However, we are lucky enough to know the real answer: ``w=2, b=0.3``, thus a better option is to check out model parameters directly.
In PaddlePaddle, training is just to get a collection of model parameters, which are ``w`` and ``b`` in this case. Each parameter is saved in an individual file in the popular ``numpy`` array format. Here is the code that reads parameters from last pass.
.. code-block:: python
import numpy as np
import os
def load(file_name):
with open(file_name, 'rb') as f:
f.read(16) # skip header for float type.
return np.fromfile(f, dtype=np.float32)
print 'w=%.6f, b=%.6f' % (load('output/pass-00029/w'), load('output/pass-00029/b'))
# w=1.999743, b=0.300137
.. image:: parameters.png
:align: center
Although starts from a random guess, you can see that value of ``w`` changes quickly towards 2 and ``b`` changes quickly towards 0.3. In the end, the predicted line is almost identical with real answer.
There, you have recovered the underlying pattern between ``X`` and ``Y`` only from observed data.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

@ -0,0 +1,113 @@
从源码编译PaddlePaddle
======================
.. _build_step:
编译方法
----------------
PaddlePaddle主要使用 `CMake <https://cmake.org>`_ 以及GCC, G++作为编译工具。
我们推荐您使用PaddlePaddle编译环境镜像完成编译这样可以免去单独安装编译依赖的步骤可选的不同编译环境
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ 找到。
编译PaddlePaddle需要执行
.. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 如果使用Docker编译环境执行下面的命令编译CPU-Only的二进制
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh
# 如果不使用Docker编译环境执行下面的命令
mkdir build
cd build
cmake -DWITH_GPU=OFF -DWITH_TESTING=OFF ..
make
编译完成后会在build/python/dist目录下生成输出的whl包可以选在在当前机器安装也可以拷贝到目标机器安装
.. code-block:: bash
pip install python/dist/*.whl
.. _build_step:
编译依赖
----------------
PaddlePaddle编译需要使用到下面的依赖包含但不限于其他的依赖软件会自动在编译时下载。
.. csv-table:: PaddlePaddle编译依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"CMake", ">=3.5", ""
"GCC", "4.8.2", "推荐使用CentOS的devtools2"
"Python", "2.7.x", "依赖libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "可选"
.. _build_options:
编译选项
----------------
PaddlePaddle的编译选项包括生成CPU/GPU二进制文件、链接何种BLAS库等。
用户可在调用cmake的时候设置它们详细的cmake使用方法可以参考
`官方文档 <https://cmake.org/cmake-tutorial>`_
在cmake的命令行中通过使用 ``-D`` 命令设置该类编译选项,例如:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: 编译选项说明
:header: "选项", "说明", "默认值"
:widths: 1, 7, 2
"WITH_GPU", "是否支持GPU", "ON"
"WITH_C_API", "是否仅编译CAPI", "OFF"
"WITH_DOUBLE", "是否使用双精度浮点数", "OFF"
"WITH_DSO", "是否运行时动态加载CUDA动态库而非静态加载CUDA动态库。", "ON"
"WITH_AVX", "是否编译含有AVX指令集的PaddlePaddle二进制文件", "ON"
"WITH_PYTHON", "是否内嵌PYTHON解释器", "ON"
"WITH_STYLE_CHECK", "是否编译时进行代码风格检查", "ON"
"WITH_TESTING", "是否开启单元测试", "ON"
"WITH_DOC", "是否编译中英文文档", "OFF"
"WITH_SWIG_PY", "是否编译PYTHON的SWIG接口该接口可用于预测和定制化训练", "Auto"
"WITH_GOLANG", "是否编译go语言的可容错parameter server", "ON"
"WITH_MKL", "是否使用MKL数学库如果为否则是用OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle支持 `MKL <https://software.intel.com/en-us/intel-mkl>`_
`OpenBlAS <http://www.openblas.net/>`_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集
还会下载MKL-DNN数学库详细参考 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_
如果关闭MKL则会使用OpenBLAS作为BLAS库。
CUDA/cuDNN
+++++++++++
PaddlePaddle在编译时/运行时会自动找到系统中安装的CUDA和cuDNN库进行编译和执行。
使用参数 :code:`-DCUDA_ARCH_NAME=Auto` 可以指定开启自动检测SM架构加速编译。
PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行但尽量请保持编译和运行使用的cuDNN是同一个版本。
我们推荐使用最新版本的cuDNN。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时首先在系统路径 :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**注意这几个编译选项的设置只在第一次cmake的时候有效。如果之后想要重新设置推荐清理整个编译目录** :code:`rm -rf` **后,再指定。**

@ -1,236 +0,0 @@
Installing from Sources
==========================
* [1. Download and Setup](#download)
* [2. Requirements](#requirements)
* [3. Build on Ubuntu](#ubuntu)
* [4. Build on Centos](#centos)
## <span id="download">Download and Setup</span>
You can download PaddlePaddle from the [github source](https://github.com/PaddlePaddle/Paddle).
```bash
git clone https://github.com/PaddlePaddle/Paddle paddle
cd paddle
```
## <span id="requirements">Requirements</span>
To compile the source code, your computer must be equipped with the following dependencies.
- **Compiler**: GCC >= 4.8 or Clang >= 3.3 (AppleClang >= 5.1) and gfortran compiler
- **CMake**: CMake >= 3.0 (at least CMake 3.4 on Mac OS X)
- **BLAS**: MKL, OpenBlas or ATLAS
- **Python**: only support Python 2.7
- **Go**
**Note:** For CUDA 7.0 and CUDA 7.5, GCC 5.0 and up are not supported!
For CUDA 8.0, GCC versions later than 5.3 are not supported!
### Options
PaddlePaddle supports some build options.
<html>
<table>
<thead>
<tr>
<th scope="col" class="left">Optional</th>
<th scope="col" class="left">Description</th>
</tr>
</thead>
<tbody>
<tr><td class="left">WITH_GPU</td><td class="left">Compile PaddlePaddle with NVIDIA GPU</td></tr>
<tr><td class="left">WITH_AVX</td><td class="left">Compile PaddlePaddle with AVX intrinsics</td></tr>
<tr><td class="left">WITH_DSO</td><td class="left">Compile PaddlePaddle with dynamic linked CUDA</td></tr>
<tr><td class="left">WITH_TESTING</td><td class="left">Compile PaddlePaddle with unit testing</td></tr>
<tr><td class="left">WITH_SWIG_PY</td><td class="left">Compile PaddlePaddle with inference api</td></tr>
<tr><td class="left">WITH_STYLE_CHECK</td><td class="left">Compile PaddlePaddle with style check</td></tr>
<tr><td class="left">WITH_PYTHON</td><td class="left">Compile PaddlePaddle with python interpreter</td></tr>
<tr><td class="left">WITH_DOUBLE</td><td class="left">Compile PaddlePaddle with double precision</td></tr>
<tr><td class="left">WITH_RDMA</td><td class="left">Compile PaddlePaddle with RDMA support</td></tr>
<tr><td class="left">WITH_TIMER</td><td class="left">Compile PaddlePaddle with stats timer</td></tr>
<tr><td class="left">WITH_PROFILER</td><td class="left">Compile PaddlePaddle with GPU profiler</td></tr>
<tr><td class="left">WITH_DOC</td><td class="left">Compile PaddlePaddle with documentation</td></tr>
<tr><td class="left">WITH_COVERAGE</td><td class="left">Compile PaddlePaddle with code coverage</td></tr>
<tr><td class="left">COVERALLS_UPLOAD</td><td class="left">Package code coverage data to coveralls</td></tr>
<tr><td class="left">ON_TRAVIS</td><td class="left">Exclude special unit test on Travis CI</td></tr>
</tbody>
</table>
</html>
**Note:**
- The GPU version works best with Cuda Toolkit 8.0 and cuDNN v5.
- Other versions like Cuda Toolkit 7.0, 7.5 and cuDNN v3, v4 are also supported.
- **To utilize cuDNN v5, Cuda Toolkit 7.5 is prerequisite and vice versa.**
As a simple example, consider the following:
1. **BLAS Dependencies(optional)**
CMake will search BLAS libraries from the system. If not found, OpenBLAS will be downloaded, built and installed automatically.
To utilize preinstalled BLAS you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`.
```bash
# specify MKL
cmake .. -DMKL_ROOT=<mkl_path>
# or specify OpenBLAS
cmake .. -DOPENBLAS_ROOT=<openblas_path>
```
2. **Doc Dependencies(optional)**
To generate PaddlePaddle's documentation, install dependencies and set `-DWITH_DOC=ON` as follows:
```bash
pip install 'sphinx>=1.4.0'
pip install sphinx_rtd_theme recommonmark
# install doxygen on Ubuntu
sudo apt-get install doxygen
# install doxygen on Mac OS X
brew install doxygen
# active docs in cmake
cmake .. -DWITH_DOC=ON`
```
## <span id="ubuntu">Build on Ubuntu 14.04</span>
### Install Dependencies
- **Paddle Dependencies**
```bash
# necessary
sudo apt-get update
sudo apt-get install -y git curl gcc g++ gfortran make build-essential automake
sudo apt-get install -y python python-pip python-numpy libpython-dev bison
sudo pip install 'protobuf==3.1.0.post1'
# Install Go
# You can follow https://golang.org/doc/install for a detailed explanation.
wget -O go.tgz https://storage.googleapis.com/golang/go1.8.1.linux-amd64.tar.gz && \
tar -C $HOME -xzf go.tgz && \
mkdir $HOME/gopath && \
rm go.tgz
# Setup environment variables
export GOROOT=$HOME/go
export GOPATH=$HOME/gopath
export PATH=$PATH:$GOROOT/bin
# install cmake 3.4
curl -sSL https://cmake.org/files/v3.4/cmake-3.4.1.tar.gz | tar -xz && \
cd cmake-3.4.1 && ./bootstrap && make -j4 && sudo make install && \
cd .. && rm -rf cmake-3.4.1
```
- **GPU Dependencies (optional)**
To build GPU version, you will need the following installed:
1. a CUDA-capable GPU
2. A supported version of Linux with a GCC compiler and toolchain
3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn)
The CUDA development environment relies on tight integration with the host development environment,
including the host compiler and C runtime libraries, and is therefore only supported on
distribution versions that have been qualified for this CUDA Toolkit release.
After downloading cuDNN library, issue the following commands:
```bash
sudo tar -xzf cudnn-7.5-linux-x64-v5.1.tgz -C /usr/local
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
```
Then you need to set LD\_LIBRARY\_PATH, PATH environment variables in ~/.bashrc.
```bash
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH
```
### Build and Install
As usual, the best option is to create build folder under paddle project directory.
```bash
mkdir build && cd build
```
Finally, you can build and install PaddlePaddle:
```bash
# you can add build option here, such as:
cmake .. -DCMAKE_INSTALL_PREFIX=<path to install>
# please use sudo make install, if you want to install PaddlePaddle into the system
make -j `nproc` && make install
# set PaddlePaddle installation path in ~/.bashrc
export PATH=<path to install>/bin:$PATH
# install PaddlePaddle Python modules.
sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
```
## <span id="centos">Build on Centos 7</span>
### Install Dependencies
- **CPU Dependencies**
```bash
# necessary
sudo yum update
sudo yum install -y epel-release
sudo yum install -y make cmake3 python-devel python-pip gcc-gfortran swig git
sudo pip install wheel numpy
sudo pip install 'protobuf>=3.0.0'
```
- **GPU Dependencies (optional)**
To build GPU version, you will need the following installed:
1. a CUDA-capable GPU
2. A supported version of Linux with a GCC compiler and toolchain
3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads)
4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn)
The CUDA development environment relies on tight integration with the host development environment,
including the host compiler and C runtime libraries, and is therefore only supported on
distribution versions that have been qualified for this CUDA Toolkit release.
After downloading cuDNN library, issue the following commands:
```bash
sudo tar -xzf cudnn-7.5-linux-x64-v5.1.tgz -C /usr/local
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
```
Then you need to set LD\_LIBRARY\_PATH, PATH environment variables in ~/.bashrc.
```bash
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export PATH=/usr/local/cuda/bin:$PATH
```
### Build and Install
As usual, the best option is to create build folder under paddle project directory.
```bash
mkdir build && cd build
```
Finally, you can build and install PaddlePaddle:
```bash
# you can add build option here, such as:
cmake3 .. -DCMAKE_INSTALL_PREFIX=<path to install>
# please use sudo make install, if you want to install PaddlePaddle into the system
make -j `nproc` && make install
# set PaddlePaddle installation path in ~/.bashrc
export PATH=<path to install>/bin:$PATH
# install PaddlePaddle Python modules.
sudo pip install <path to install>/opt/paddle/share/wheels/*.whl
```

@ -0,0 +1,127 @@
Build PaddlePaddle from Sources
==========================
.. _build_step:
How To Build
----------------
PaddlePaddle mainly uses `CMake <https://cmake.org>`_ and GCC, G++ as compile
tools. We recommend you to use our pre-built Docker image to run the build
to avoid installing dependencies by yourself. We have several build environment
Docker images `here <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_.
Then run:
.. code-block:: bash
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# run the following command to build CPU-Only binaries if you are using docker
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh
# else run these commands
mkdir build
cd build
cmake -DWITH_GPU=OFF -DWITH_TESTING=OFF ..
make
When the compile finishes, you can get the output whl package under
build/python/dist, then you can choose to install the whl on local
machine or copy it to the target machine.
.. code-block:: bash
pip install python/dist/*.whl
.. _build_step:
Compile Dependencies
----------------
PaddlePaddle need the following dependencies when compiling, other dependencies
will be downloaded automatically.
.. csv-table:: PaddlePaddle Compile Dependencies
:header: "Dependency", "Version", "Description"
:widths: 10, 15, 30
"CMake", ">=3.5", ""
"GCC", "4.8.2", "Recommend devtools2 for CentOS"
"Python", "2.7.x", "Need libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "Optional"
.. _build_options:
Build Options
----------------
Build options include whether build binaries for CPU or GPU, which BLAS
library to use etc. You may pass these settings when running cmake.
For detailed cmake tutorial please refer to `here <https://cmake.org/cmake-tutorial>`_
.. _build_options_bool:
Bool Type Options
----------------
You can add :code:`-D` argument to pass such options, like:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: Bool Type Options
:header: "Option", "Description", "Default"
:widths: 1, 7, 2
"WITH_GPU", "Build with GPU support", "ON"
"WITH_C_API", "Build only CAPI", "OFF"
"WITH_DOUBLE", "Build with double precision", "OFF"
"WITH_DSO", "Dynamically load CUDA libraries", "ON"
"WITH_AVX", "Build with AVX support", "ON"
"WITH_PYTHON", "Build with integrated Python interpreter", "ON"
"WITH_STYLE_CHECK", "Check code style when building", "ON"
"WITH_TESTING", "Build unit tests", "ON"
"WITH_DOC", "Build documentaions", "OFF"
"WITH_SWIG_PY", "Build Python SWIG interface for V2 API", "Auto"
"WITH_GOLANG", "Build fault-tolerant parameter server written in go", "ON"
"WITH_MKL", "Use MKL as BLAS library, else use OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle supports `MKL <https://software.intel.com/en-us/intel-mkl>`_ and
`OpenBlAS <http://www.openblas.net/>`_ as BLAS library。By default it uses MKL.
If you are using MKL and your machine supports AVX2, MKL-DNN will also be downloaded
and used, for more `details <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_ .
If you choose not to use MKL, then OpenBlAS will be used.
CUDA/cuDNN
+++++++++++
PaddlePaddle will automatically find CUDA and cuDNN when compiling and running.
parameter :code:`-DCUDA_ARCH_NAME=Auto` can be used to detect SM architecture
automatically in order to speed up the build.
PaddlePaddle can build with any version later than cuDNN v5.1, and we intend to
keep on with latest cuDNN versions. Be sure to run with the same version of cuDNN
you built.
Pass Compile Options
++++++++++++++
You can pass compile options to use intended BLAS/CUDA/Cudnn libraries.
When running cmake command, it will search system paths like
:code:`/usr/lib:/usr/local/lib` and then search paths that you
passed to cmake, i.e.
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**NOTE: These options only take effect when running cmake for the first time, you need to clean the cmake cache or clean the build directory (** :code:`rm -rf` **) if you want to change it.**

Binary file not shown.

Before

Width:  |  Height:  |  Size: 179 KiB

@ -1,43 +0,0 @@
PaddlePaddle的编译选项
======================
PaddlePaddle的编译选项包括生成CPU/GPU二进制文件、链接何种BLAS库等。用户可在调用cmake的时候设置它们详细的cmake使用方法可以参考 `官方文档 <https://cmake.org/cmake-tutorial>`_
Bool型的编译选项
----------------
用户可在cmake的命令行中通过使用 ``-D`` 命令设置该类编译选项,例如
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: Bool型的编译选项
:widths: 1, 7, 2
:file: compile_options.csv
BLAS/CUDA/Cudnn的编译选项
--------------------------
BLAS
+++++
PaddlePaddle支持以下任意一种BLAS库`MKL <https://software.intel.com/en-us/intel-mkl>`_ `ATLAS <http://math-atlas.sourceforge.net/>`_ `OpenBlAS <http://www.openblas.net/>`_`REFERENCE BLAS <http://www.netlib.org/blas/>`_
.. csv-table:: BLAS路径相关的编译选项
:widths: 1, 2, 7
:file: cblas_settings.csv
CUDA/Cudnn
+++++++++++
PaddlePaddle可以使用cudnn v2之后的任何一个版本来编译运行但尽量请保持编译和运行使用的cudnn是同一个版本。 我们推荐使用最新版本的cudnn v5.1。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/Cudnn库。cmake编译时首先在系统路径(/usr/lib\:/usr/local/lib)中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DMKL_ROOT=/opt/mkl/ -DCUDNN_ROOT=/opt/cudnnv5
注意这几个编译选项的设置只在第一次cmake的时候有效。如果之后想要重新设置推荐清理整个编译目录``rm -rf``)后,再指定。

@ -1,5 +0,0 @@
编译选项,描述,注意
MKL_ROOT,MKL的路径,${MKL_ROOT}/include下需要包含mkl.h${MKL_ROOT}/lib目录下需要包含mkl_coremkl_sequential和mkl_intel_lp64三个库。
ATLAS_ROOT,ATLAS的路径,${ATLAS_ROOT}/include下需要包含cblas.h${ATLAS_ROOT}/lib下需要包含cblas和atlas两个库。
OPENBLAS_ROOT,OpenBLAS的路径,${OPENBLAS_ROOT}/include下需要包含cblas.h${OPENBLAS_ROOT}/lib下需要包含openblas库。
REFERENCE_CBLAS_ROOT,REFERENCE BLAS的路径,${REFERENCE_CBLAS_ROOT}/include下需要包含cblas.h${REFERENCE_CBLAS_ROOT}/lib下需要包含cblas库。
1 编译选项 描述 注意
2 MKL_ROOT MKL的路径 ${MKL_ROOT}/include下需要包含mkl.h,${MKL_ROOT}/lib目录下需要包含mkl_core,mkl_sequential和mkl_intel_lp64三个库。
3 ATLAS_ROOT ATLAS的路径 ${ATLAS_ROOT}/include下需要包含cblas.h,${ATLAS_ROOT}/lib下需要包含cblas和atlas两个库。
4 OPENBLAS_ROOT OpenBLAS的路径 ${OPENBLAS_ROOT}/include下需要包含cblas.h,${OPENBLAS_ROOT}/lib下需要包含openblas库。
5 REFERENCE_CBLAS_ROOT REFERENCE BLAS的路径 ${REFERENCE_CBLAS_ROOT}/include下需要包含cblas.h,${REFERENCE_CBLAS_ROOT}/lib下需要包含cblas库。

@ -1,12 +0,0 @@
选项,说明,默认值
WITH_GPU,是否支持GPU。,取决于是否寻找到CUDA工具链
WITH_DOUBLE,是否使用双精度浮点数。,否
WITH_DSO,是否运行时动态加载CUDA动态库而非静态加载CUDA动态库。,是
WITH_AVX,是否编译含有AVX指令集的PaddlePaddle二进制文件,是
WITH_PYTHON,是否内嵌PYTHON解释器。方便今后的嵌入式移植工作。,是
WITH_STYLE_CHECK,是否编译时进行代码风格检查,是
WITH_RDMA,是否开启RDMA,否
WITH_TIMER,是否开启计时功能。如果开启会导致运行略慢打印的日志变多但是方便调试和测Benchmark,否
WITH_TESTING,是否开启单元测试,取决于是否寻找到GTEST
WITH_DOC,是否编译中英文文档,否
WITH_SWIG_PY,是否编译PYTHON的SWIG接口该接口可用于预测和定制化训练,取决于是否寻找到SWIG
1 选项 说明 默认值
2 WITH_GPU 是否支持GPU。 取决于是否寻找到CUDA工具链
3 WITH_DOUBLE 是否使用双精度浮点数。
4 WITH_DSO 是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库。
5 WITH_AVX 是否编译含有AVX指令集的PaddlePaddle二进制文件
6 WITH_PYTHON 是否内嵌PYTHON解释器。方便今后的嵌入式移植工作。
7 WITH_STYLE_CHECK 是否编译时进行代码风格检查
8 WITH_RDMA 是否开启RDMA
9 WITH_TIMER 是否开启计时功能。如果开启会导致运行略慢,打印的日志变多,但是方便调试和测Benchmark
10 WITH_TESTING 是否开启单元测试 取决于是否寻找到GTEST
11 WITH_DOC 是否编译中英文文档
12 WITH_SWIG_PY 是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练 取决于是否寻找到SWIG

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -6,12 +6,13 @@
安装流程
++++++++
PaddlePaddle提供Docker镜像来部署环境。
PaddlePaddle提供pip和Docker的安装方式
.. toctree::
:maxdepth: 1
docker_install_cn.rst
pip_install_cn.rst
docker_install_cn.rst
编译流程
@ -19,9 +20,14 @@ PaddlePaddle提供Docker镜像来部署环境。
.. warning::
编译流程主要推荐高级用户查看,普通用户请走安装流程
建议直接使用上述安装流程,方便快速安装。只有在遇到需要独立定制的二进制时才需要编译
.. toctree::
:maxdepth: 1
cmake/build_from_source_cn.rst
build_from_source_cn.rst
常见问题解答
++++++++++
`常见问题解答 <http://www.paddlepaddle.org/docs/develop/documentation/zh/faq/build_and_install/index_cn.html>`_

@ -1,22 +1,33 @@
Install and Build
=================
Install PaddlePaddle
----------------------
.. _install_steps:
.. toctree::
:maxdepth: 1
Install Steps
++++++++
You can choose either pip or Docker to complete your install:
.. toctree::
:maxdepth: 1
pip_install_en.rst
docker_install_en.rst
docker_install_en.rst
Build from Source
-----------------
.. warning::
Please use :code:`docker` image to install paddle. The building guide is used for hacking or contributing PaddlePaddle source code.
We recommend to directly install via above installation steps, you'll only need to build PaddlePaddle from source when you need a modifed binary.
.. toctree::
:maxdepth: 1
build_from_source_en.md
FAQ
++++++++++
`FAQ <http://www.paddlepaddle.org/docs/develop/documentation/zh/faq/build_and_install/index_en.html>`_

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

@ -0,0 +1,86 @@
使用pip安装PaddlePaddle
================================
PaddlePaddle可以使用常用的Python包管理工具
`pip <https://pip.pypa.io/en/stable/installing/>`_
完成安装并可以在大多数主流的Linux操作系统以及MacOS上执行。
.. _pip_install:
使用pip安装
------------------------------
执行下面的命令即可在当前机器上安装PaddlePaddle的运行时环境并自动下载安装依赖软件。
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本需要执行
.. code-block:: bash
pip install paddlepaddle-gpu
如果需要获取并安装最新开发分支PaddlePaddle可以从我们的CI系统中下载最新的whl安装包和c-api开发包并安装
您可以从下面的表格中找到需要的版本:
如果在点击下面链接时出现如下登陆界面点击“Log in as guest”即可开始下载
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: 各个版本最新的whl包
:header: "版本说明", "cp27-cp27mu", "cp27-cp27mu", "C-API"
:widths: 1, 3, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "暂无"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
.. _pip_dependency:
运行环境依赖
------------------------------
PaddlePaddle安装包由于不仅仅包含.py程序而且包含了C++编写的部分所以我们确保发布的二进制包可以支持主流的Linux操作系统比如CentOS 6以上Ubuntu 14.04以上MacOS 10.12以上。
PaddlePaddle发布的安装包会尽量对齐 `manylinux1 <https://www.python.org/dev/peps/pep-0513/#the-manylinux1-policy>`_ 标准通常使用CentOS 5作为编译环境。但由于CUDA库通常需要CentOS 6以上而且CentOS 5即将停止维护所以我们默认使用CentOS 6作为标准编译环境。
.. csv-table:: PaddlePaddle环境依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"操作系统", "Linux, MacOS", "CentOS 6以上Ubuntu 14.04以上MacOS 10.12以上"
"Python", "2.7.x", "暂时不支持Python3"
"libc.so", "GLIBC_2.7", "glibc至少包含GLIBC_2.7以上的符号"
"libstdc++.so", "GLIBCXX_3.4.11, CXXABI_1.3.3", "至少包含GLIBCXX_3.4.11, CXXABI_1.3.3以上的符号"
"libgcc_s.so", "GCC_3.3", "至少包含GCC_3.3以上的符号"
.. _pip_faq:
安装常见问题和解决方法
------------------------------
- paddlepaddle*.whl is not a supported wheel on this platform.
出现这个问题的主要原因是没有找到和当前系统匹配的paddlepaddle安装包。请检查Python版本是否为2.7系列。另外最新的pip官方源中的安装包默认是manylinux1标准需要使用最新的pip (>9.0.0) 才可以安装。可以使用下面的命令更新您的pip
.. code-block:: bash
pip install --upgrade pip
如果仍然存在问题,可以执行:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
获取当前系统支持的安装包格式并检查和需安装的包是否匹配。pypi安装包可以在 `这个 <https://pypi.python.org/pypi/paddlepaddle/0.10.5>`_ 链接中找到。
如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 需要升级pip版本到最新 如果系统支持 manylinux1_x86_64 而安装包(本地)是 linux_x86_64 可以重命名这个whl包为 manylinux1_x86_64 再安装。

@ -0,0 +1,104 @@
Install PaddlePaddle Using pip
================================
You can use current widely used Python package management
tool `pip <https://pip.pypa.io/en/stable/installing/>`_
to install PaddlePaddle. This method can be used in
most of current Linux systems or MacOS.
.. _pip_install:
Install Using pip
------------------------------
Run the following command to install PaddlePaddle on the current
machine, it will also download requirements.
.. code-block:: bash
pip install paddlepaddle
If you wish to install GPU version, just run:
.. code-block:: bash
pip install paddlepaddle-gpu
If you wish to install the latest develop branch PaddlePaddle,
you can download the latest whl package from our CI system. Access
the below links, log in as guest, then click at the "Artifact"
tab, you'll find the download link of whl packages.
If the links below shows up the login form, just click "Log in as guest" to start the download:
.. image:: paddleci.png
:scale: 50 %
:align: center
.. csv-table:: whl package of each version
:header: "version", "cp27-cp27mu", "cp27-cp27mu", "C-API"
:widths: 1, 3, 3, 3
"cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxCp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_CpuAvxOpenblas/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "Not Available"
"cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda75cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda80cudnn5cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
"cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl>`_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl>`_", "`paddle.tgz <http://guest@paddleci.ngrok.io/repository/download/Manylinux1_Cuda8cudnn7cp27cp27mu/.lastSuccessful/paddle.tgz>`_"
.. _pip_dependency:
Runtime Dependency
------------------------------
PaddlePaddle installation packages (whl) does not only contain .py files,
but also binaries built from C++ code. We ensure that PaddlePaddle can
run on current mainline Linux distributions, like CentOS 6, Ubuntu 14.04
and MacOS 10.12.
PaddlePaddle whl packages are trying to satisfy
`manylinux1 <https://www.python.org/dev/peps/pep-0513/#the-manylinux1-policy>`_
standard, which uses CentOS 5 as default build environment. But CUDA libraries
seems only run on CentOS 6 at least, also, CentOS 5 is about to end its lifetime,
so we use CentOS 6 as default build environment.
.. csv-table:: PaddlePaddle Runtime Deps
:header: "Dependency", "version", "description"
:widths: 10, 15, 30
"OS", "Linux, MacOS", "CentOS 6 or laterUbuntu 14.04 or laterMacOS 10.12 or later"
"Python", "2.7.x", "Currently Python3 is not supported"
"libc.so", "GLIBC_2.7", "glibc at least include GLIBC_2.7 symbols"
"libstdc++.so", "GLIBCXX_3.4.11, CXXABI_1.3.3", "At least include GLIBCXX_3.4.11, CXXABI_1.3.3 symbols"
"libgcc_s.so", "GCC_3.3", "At least include GCC_3.3 symbols"
.. _pip_faq:
FAQ
------------------------------
- paddlepaddle*.whl is not a supported wheel on this platform.
The main cause of this issue is that your current platform is
not supported. Please check that you are using Python 2.7 series.
Besides, pypi only supports manylinux1 standard, you'll need to
upgrade your pip to >9.0.0. Then run the below command:
.. code-block:: bash
pip install --upgrade pip
If the problem still exists, run the following command:
.. code-block:: bash
python -c "import pip; print(pip.pep425tags.get_supported())"
Then you'll get supported package suffixes, then check if it matches
the file name of the whl package. You can find default whl package at
`here <https://pypi.python.org/pypi/paddlepaddle/0.10.5>`_
If your system supports linux_x86_64 but the whl package is manylinux1_x86_64,
you'll need to update pip to the latest version; If your system supports
manylinux1_x86_64 but the whl package is linux_x86_64 you can rename the
file to manylinux1_x86_64 suffix and then install.

@ -1,10 +1,61 @@
新手入门
============
.. _quick_install:
快速安装
++++++++
PaddlePaddle支持使用pip快速安装目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12并安装有Python2.7。
执行下面的命令完成快速安装:
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本需要执行
.. code-block:: bash
pip install paddlepaddle-gpu
更详细的安装和编译方法参考:
.. toctree::
:maxdepth: 1
build_and_install/index_cn.rst
concepts/use_concepts_cn.rst
- `深度学习入门课程 <http://book.paddlepaddle.org/index.cn.html>`_
.. _quick_start:
快速开始
++++++++
创建一个 housing.py 并粘贴此Python代码
.. code-block:: python
import paddle.v2 as paddle
# Initialize PaddlePaddle.
paddle.init(use_gpu=False, trainer_count=1)
# Configure the neural network.
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
# Infer using provided test data.
probs = paddle.infer(
output_layer=y_predict,
parameters=paddle.dataset.uci_housing.model(),
input=[item for item in paddle.dataset.uci_housing.test()()])
for i in xrange(len(probs)):
print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
.. toctree::
:maxdepth: 1
concepts/use_concepts_cn.rst

@ -1,9 +1,61 @@
GET STARTED
============
.. _quick_install:
Quick Install
----------------------
You can use pip to install PaddlePaddle with a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install:
.. code-block:: bash
pip install paddlepaddle
If you need to install GPU version, run:
.. code-block:: bash
pip install paddlepaddle-gpu
For more details about installation and build:
.. toctree::
:maxdepth: 1
build_and_install/index_en.rst
- `Deep Learning 101 <http://book.paddlepaddle.org/index.html>`_
.. _quick_start:
Quick Start
++++++++
Create a new file called housing.py, and paste this Python
code:
.. code-block:: python
import paddle.v2 as paddle
# Initialize PaddlePaddle.
paddle.init(use_gpu=False, trainer_count=1)
# Configure the neural network.
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
# Infer using provided test data.
probs = paddle.infer(
output_layer=y_predict,
parameters=paddle.dataset.uci_housing.model(),
input=[item for item in paddle.dataset.uci_housing.test()()])
for i in xrange(len(probs)):
print 'Predicted price: ${:,.2f}'.format(probs[i][0] * 1000)
Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.

@ -0,0 +1,163 @@
此教程会介绍如何使用Python的cProfile包与Python库yepgoogle perftools来运行性能分析(Profiling)与调优。
运行性能分析可以让开发人员科学的,有条不紊的对程序进行性能优化。性能分析是性能调优的基础。因为在程序实际运行中,真正的瓶颈可能和程序员开发过程中想象的瓶颈相去甚远。
性能优化的步骤,通常是循环重复若干次『性能分析 --> 寻找瓶颈 ---> 调优瓶颈 --> 性能分析确认调优效果』。其中性能分析是性能调优的至关重要的量化指标。
Paddle提供了Python语言绑定。用户使用Python进行神经网络编程训练测试。Python解释器通过`pybind`和`swig`调用Paddle的动态链接库进而调用Paddle C++部分的代码。所以Paddle的性能分析与调优分为两个部分:
* Python代码的性能分析
* Python与C++混合代码的性能分析
## Python代码的性能分析
### 生成性能分析文件
Python标准库中提供了性能分析的工具包[cProfile](https://docs.python.org/2/library/profile.html)。生成Python性能分析的命令如下:
```bash
python -m cProfile -o profile.out main.py
```
其中`-o`标识了一个输出的文件名,用来存储本次性能分析的结果。如果不指定这个文件,`cProfile`会打印一些统计信息到`stdout`。这不方便我们进行后期处理(进行`sort`, `split`, `cut`等等)。
### 查看性能分析文件
当main.py运行完毕后性能分析结果文件`profile.out`就生成出来了。我们可以使用[cprofilev](https://github.com/ymichael/cprofilev)来查看性能分析结果。`cprofilev`是一个Python的第三方库。使用它会开启一个HTTP服务将性能分析结果以网页的形式展示出来。
使用`pip install cprofilev`安装`cprofilev`工具。安装完成后使用如下命令开启HTTP服务
```bash
cprofilev -a 0.0.0.0 -p 3214 -f profile.out main.py
```
其中`-a`标识HTTP服务绑定的IP。使用`0.0.0.0`允许外网访问这个HTTP服务。`-p`标识HTTP服务的端口。`-f`标识性能分析的结果文件。`main.py`标识被性能分析的源文件。
访问对应网址,即可显示性能分析的结果。性能分析结果格式如下:
```text
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.284 0.284 29.514 29.514 main.py:1(<module>)
4696 0.128 0.000 15.748 0.003 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/executor.py:20(run)
4696 12.040 0.003 12.040 0.003 {built-in method run}
1 0.144 0.144 6.534 6.534 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/__init__.py:14(<module>)
```
每一列的含义是:
| 列名 | 含义 |
| --- | --- |
| ncalls | 函数的调用次数 |
| tottime | 函数实际使用的总时间。该时间去除掉本函数调用其他函数的时间 |
| percall | tottime的每次调用平均时间 |
| cumtime | 函数总时间。包含这个函数调用其他函数的时间 |
| percall | cumtime的每次调用平均时间 |
| filename:lineno(function) | 文件名, 行号,函数名 |
### 寻找性能瓶颈
通常`tottime`和`cumtime`是寻找瓶颈的关键指标。这两个指标代表了某一个函数真实的运行时间。
将性能分析结果按照tottime排序效果如下:
```text
4696 12.040 0.003 12.040 0.003 {built-in method run}
300005 0.874 0.000 1.681 0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/dataset/mnist.py:38(reader)
107991 0.676 0.000 1.519 0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:219(__init__)
4697 0.626 0.000 2.291 0.000 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:428(sync_with_cpp)
1 0.618 0.618 0.618 0.618 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/__init__.py:1(<module>)
```
可以看到最耗时的函数是C++端的`run`函数。这需要联合我们第二节`Python与C++混合代码的性能分析`来进行调优。而`sync_with_cpp`函数的总共耗时很长,每次调用的耗时也很长。于是我们可以点击`sync_with_cpp`的详细信息,了解其调用关系。
```text
Called By:
Ordered by: internal time
List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>
Function was called by...
ncalls tottime cumtime
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:428(sync_with_cpp) <- 4697 0.626 2.291 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:562(sync_with_cpp)
/home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:562(sync_with_cpp) <- 4696 0.019 2.316 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:487(clone)
1 0.000 0.001 /home/yuyang/perf_test/.env/lib/python2.7/site-packages/paddle/v2/fluid/framework.py:534(append_backward)
Called:
Ordered by: internal time
List reduced from 4497 to 2 due to restriction <'sync_with_cpp'>
```
通常观察热点函数间的调用关系,和对应行的代码,就可以了解到问题代码在哪里。当我们做出性能修正后,再次进行性能分析(profiling)即可检查我们调优后的修正是否能够改善程序的性能。
## Python与C++混合代码的性能分析
### 生成性能分析文件
C++的性能分析工具非常多。常见的包括`gprof`, `valgrind`, `google-perftools`。但是调试Python中使用的动态链接库与直接调试原始二进制相比增加了很多复杂度。幸而Python的一个第三方库`yep`提供了方便的和`google-perftools`交互的方法。于是这里使用`yep`进行Python与C++混合代码的性能分析
使用`yep`前需要安装`google-perftools`与`yep`包。ubuntu下安装命令为
```bash
apt install libgoogle-perftools-dev
pip install yep
```
安装完毕后,我们可以通过
```bash
python -m yep -v main.py
```
生成性能分析文件。生成的性能分析文件为`main.py.prof`。
命令行中的`-v`指定在生成性能分析文件之后在命令行显示分析结果。我们可以在命令行中简单的看一下生成效果。因为C++与Python不同编译时可能会去掉调试信息运行时也可能因为多线程产生混乱不可读的性能分析结果。为了生成更可读的性能分析结果可以采取下面几点措施:
1. 编译时指定`-g`生成调试信息。使用cmake的话可以将CMAKE_BUILD_TYPE指定为`RelWithDebInfo`。
2. 编译时一定要开启优化。单纯的`Debug`编译性能会和`-O2`或者`-O3`有非常大的差别。`Debug`模式下的性能测试是没有意义的。
3. 运行性能分析的时候,先从单线程开始,再开启多线程,进而多机。毕竟如果单线程调试更容易。可以设置`OMP_NUM_THREADS=1`这个环境变量关闭openmp优化。
### 查看性能分析文件
在运行完性能分析后,会生成性能分析结果文件。我们可以使用[pprof](https://github.com/google/pprof)来显示性能分析结果。注意,这里使用了用`Go`语言重构后的`pprof`因为这个工具具有web服务界面且展示效果更好。
安装`pprof`的命令和一般的`Go`程序是一样的,其命令如下:
```bash
go get github.com/google/pprof
```
进而我们可以使用如下命令开启一个HTTP服务:
```bash
pprof -http=0.0.0.0:3213 `which python` ./main.py.prof
```
这行命令中,`-http`指开启HTTP服务。`which python`会产生当前Python二进制的完整路径进而指定了Python可执行文件的路径。`./main.py.prof`输入了性能分析结果。
访问对应的网址,我们可以查看性能分析的结果。结果如下图所示:
![result](./pprof_1.png)
### 寻找性能瓶颈
与寻找Python代码的性能瓶颈类似寻找Python与C++混合代码的性能瓶颈也是要看`tottime`和`cumtime`。而`pprof`展示的调用图也可以帮助我们发现性能中的问题。
例如下图中,
![kernel_perf](./pprof_2.png)
在一次训练中乘法和乘法梯度的计算占用2%-4%左右的计算时间。而`MomentumOp`占用了17%左右的计算时间。显然,`MomentumOp`的性能有问题。
在`pprof`中,对于性能的关键路径都做出了红色标记。先检查关键路径的性能问题,再检查其他部分的性能问题,可以更有次序的完成性能的优化。
## 总结
至此两种性能分析的方式都介绍完毕了。希望通过这两种性能分析的方式Paddle的开发人员和使用人员可以有次序的科学的发现和解决性能问题。

Binary file not shown.

After

Width:  |  Height:  |  Size: 344 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

@ -55,7 +55,7 @@ paddle_error paddle_matrix_set_row(paddle_matrix mat,
}
PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
paddle_real* value) {
paddle_real* value) {
if (mat == nullptr || value == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (ptr->mat == nullptr) return kPD_NULLPTR;
@ -75,7 +75,7 @@ PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
}
PD_API paddle_error paddle_matrix_get_value(paddle_matrix mat,
paddle_real* result) {
paddle_real* result) {
if (mat == nullptr || result == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (ptr->mat == nullptr) return kPD_NULLPTR;

@ -79,7 +79,7 @@ PD_API paddle_error paddle_matrix_set_row(paddle_matrix mat,
* @note value should contain enough element of data to init the mat
*/
PD_API paddle_error paddle_matrix_set_value(paddle_matrix mat,
paddle_real* value);
paddle_real* value);
/**
* @brief PDMatGetRow Get raw row buffer from matrix
@ -93,14 +93,14 @@ PD_API paddle_error paddle_matrix_get_row(paddle_matrix mat,
paddle_real** rawRowBuffer);
/**
* @brief copy data from the matrix
* @brief copy data from the matrix
* @param [in] mat Target matrix
* @param [out] result pointer to store the matrix data
* @param [out] result pointer to store the matrix data
* @return paddle_error
* @note the space of the result should allocated before invoke this API
*/
PD_API paddle_error paddle_matrix_get_value(paddle_matrix mat,
paddle_real* result);
paddle_real* result);
/**
* @brief PDMatCreateNone Create None Matrix
* @return

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save