|
|
|
@ -27,38 +27,38 @@ namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
namespace ngraphs {
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<ngraph::Node> GetSoftmax(std::shared_ptr<ngraph::Node> x) {
|
|
|
|
|
std::shared_ptr<ngraph::Node> GetSoftmax(std::shared_ptr<ngraph::Node> x,
|
|
|
|
|
int axis = -1) {
|
|
|
|
|
auto x_shape = x->get_shape();
|
|
|
|
|
int rank = x_shape.size();
|
|
|
|
|
auto x_2d_shape = paddle::platform::FlattenTo2d(x_shape, rank - 1);
|
|
|
|
|
x = paddle::platform::NgReshaper(x, x_2d_shape);
|
|
|
|
|
size_t rank = x_shape.size();
|
|
|
|
|
size_t softmax_axis = axis;
|
|
|
|
|
if (axis < 0) softmax_axis = rank + axis;
|
|
|
|
|
|
|
|
|
|
auto x_max = std::make_shared<ngraph::op::Max>(x, ngraph::AxisSet{1});
|
|
|
|
|
auto x_max =
|
|
|
|
|
std::make_shared<ngraph::op::Max>(x, ngraph::AxisSet{softmax_axis});
|
|
|
|
|
auto x_max_bcast = std::make_shared<ngraph::op::Broadcast>(
|
|
|
|
|
x_max, x_2d_shape, ngraph::AxisSet{1});
|
|
|
|
|
x_max, x_shape, ngraph::AxisSet{softmax_axis});
|
|
|
|
|
auto x_shifted = x - x_max_bcast;
|
|
|
|
|
auto x_clipped =
|
|
|
|
|
paddle::operators::ngraphs::ElementwiseScalar<ngraph::op::Maximum>(
|
|
|
|
|
-64., x_shifted);
|
|
|
|
|
auto softmax =
|
|
|
|
|
std::make_shared<ngraph::op::Softmax>(x_clipped, ngraph::AxisSet{1});
|
|
|
|
|
auto softmax = std::make_shared<ngraph::op::Softmax>(
|
|
|
|
|
x_clipped, ngraph::AxisSet{softmax_axis});
|
|
|
|
|
return softmax;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::shared_ptr<ngraph::Node> GetSoftmaxGrad(
|
|
|
|
|
std::shared_ptr<ngraph::Node> out, std::shared_ptr<ngraph::Node> dout) {
|
|
|
|
|
std::shared_ptr<ngraph::Node> GetSoftmaxGrad(std::shared_ptr<ngraph::Node> out,
|
|
|
|
|
std::shared_ptr<ngraph::Node> dout,
|
|
|
|
|
int axis = -1) {
|
|
|
|
|
auto out_shape = out->get_shape();
|
|
|
|
|
int rank = out_shape.size();
|
|
|
|
|
auto out_2d_shape = paddle::platform::FlattenTo2d(out_shape, rank - 1);
|
|
|
|
|
auto dout_2d_shape =
|
|
|
|
|
paddle::platform::FlattenTo2d(dout->get_shape(), rank - 1);
|
|
|
|
|
out = paddle::platform::NgReshaper(out, out_2d_shape);
|
|
|
|
|
dout = paddle::platform::NgReshaper(dout, dout_2d_shape);
|
|
|
|
|
size_t rank = out_shape.size();
|
|
|
|
|
size_t softmax_axis = axis;
|
|
|
|
|
if (axis < 0) softmax_axis = rank + axis;
|
|
|
|
|
|
|
|
|
|
auto node_sum =
|
|
|
|
|
std::make_shared<ngraph::op::Sum>(out * dout, ngraph::AxisSet{1});
|
|
|
|
|
auto node_sum = std::make_shared<ngraph::op::Sum>(
|
|
|
|
|
out * dout, ngraph::AxisSet{softmax_axis});
|
|
|
|
|
auto node_bcast = std::make_shared<ngraph::op::Broadcast>(
|
|
|
|
|
node_sum, out_2d_shape, ngraph::AxisSet{1});
|
|
|
|
|
node_sum, out_shape, ngraph::AxisSet{softmax_axis});
|
|
|
|
|
auto dx = (dout - node_bcast) * out;
|
|
|
|
|
return dx;
|
|
|
|
|
}
|
|
|
|
@ -68,8 +68,9 @@ void BuildSoftmaxNode(
|
|
|
|
|
std::shared_ptr<
|
|
|
|
|
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
|
|
|
|
ngb_node_map) {
|
|
|
|
|
auto op_attrs = framework::AttrReader(op->Attrs());
|
|
|
|
|
auto x = paddle::platform::GetInputNode(op, "X", ngb_node_map);
|
|
|
|
|
auto softmax = GetSoftmax(x);
|
|
|
|
|
auto softmax = GetSoftmax(x, op_attrs.Get<int>("axis"));
|
|
|
|
|
paddle::platform::SetOutputNode(op, "Out", softmax, ngb_node_map);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -78,9 +79,10 @@ void BuildSoftmaxGradNode(
|
|
|
|
|
std::shared_ptr<
|
|
|
|
|
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
|
|
|
|
|
ngb_node_map) {
|
|
|
|
|
auto op_attrs = framework::AttrReader(op->Attrs());
|
|
|
|
|
auto out = paddle::platform::GetInputNode(op, "Out", ngb_node_map);
|
|
|
|
|
auto dout = paddle::platform::GetInputNode(op, "Out@GRAD", ngb_node_map);
|
|
|
|
|
auto dx = GetSoftmaxGrad(out, dout);
|
|
|
|
|
auto dx = GetSoftmaxGrad(out, dout, op_attrs.Get<int>("axis"));
|
|
|
|
|
paddle::platform::SetOutputNode(op, "X@GRAD", dx, ngb_node_map);
|
|
|
|
|
}
|
|
|
|
|
} // namespace ngraphs
|
|
|
|
|