|
|
|
@ -271,26 +271,30 @@ def infer(use_cuda, save_dirname=None):
|
|
|
|
|
# Correspondingly, recursive_sequence_lengths = [[3, 2]] contains one
|
|
|
|
|
# level of detail info, indicating that `data` consists of two sequences
|
|
|
|
|
# of length 3 and 2, respectively.
|
|
|
|
|
user_id = fluid.create_lod_tensor([[1]], [[1]], place)
|
|
|
|
|
user_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
|
|
|
|
|
|
|
|
|
|
assert feed_target_names[1] == "gender_id"
|
|
|
|
|
gender_id = fluid.create_lod_tensor([[1]], [[1]], place)
|
|
|
|
|
gender_id = fluid.create_lod_tensor([[np.int64(1)]], [[1]], place)
|
|
|
|
|
|
|
|
|
|
assert feed_target_names[2] == "age_id"
|
|
|
|
|
age_id = fluid.create_lod_tensor([[0]], [[1]], place)
|
|
|
|
|
age_id = fluid.create_lod_tensor([[np.int64(0)]], [[1]], place)
|
|
|
|
|
|
|
|
|
|
assert feed_target_names[3] == "job_id"
|
|
|
|
|
job_id = fluid.create_lod_tensor([[10]], [[1]], place)
|
|
|
|
|
job_id = fluid.create_lod_tensor([[np.int64(10)]], [[1]], place)
|
|
|
|
|
|
|
|
|
|
assert feed_target_names[4] == "movie_id"
|
|
|
|
|
movie_id = fluid.create_lod_tensor([[783]], [[1]], place)
|
|
|
|
|
movie_id = fluid.create_lod_tensor([[np.int64(783)]], [[1]], place)
|
|
|
|
|
|
|
|
|
|
assert feed_target_names[5] == "category_id"
|
|
|
|
|
category_id = fluid.create_lod_tensor([[10, 8, 9]], [[3]], place)
|
|
|
|
|
category_id = fluid.create_lod_tensor(
|
|
|
|
|
[np.array(
|
|
|
|
|
[10, 8, 9], dtype='int64')], [[3]], place)
|
|
|
|
|
|
|
|
|
|
assert feed_target_names[6] == "movie_title"
|
|
|
|
|
movie_title = fluid.create_lod_tensor([[1069, 4140, 2923, 710, 988]],
|
|
|
|
|
[[5]], place)
|
|
|
|
|
movie_title = fluid.create_lod_tensor(
|
|
|
|
|
[np.array(
|
|
|
|
|
[1069, 4140, 2923, 710, 988], dtype='int64')], [[5]],
|
|
|
|
|
place)
|
|
|
|
|
|
|
|
|
|
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
|
|
|
|
|
# and results will contain a list of data corresponding to fetch_targets.
|
|
|
|
|