Add sequencee erase operator

add_depthwiseConv_op_gpu
Yibing Liu 7 years ago
parent 907e6d04de
commit e85c513307

@ -0,0 +1,61 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_erase_op.h"
namespace paddle {
namespace operators {
class SequenceEraseOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SequenceEraseOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SequenceEraseOp should not be null.");
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
}
};
class SequenceEraseOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SequenceEraseOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(LoDTensor) 2-D input LoDTensor with the 2-nd dimension "
"of length 1.");
AddOutput("Out",
"(LoDTensor) 2-D output LoDTensor with the 2-nd dimension "
"of length 1.");
AddAttr<std::vector<int>>("tokens",
"(vector<int>) "
"Tokens to be removed from input.");
AddComment(R"DOC(
Sequence Erase Operator.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(sequence_erase, ops::SequenceEraseOp,
ops::SequenceEraseOpMaker);
REGISTER_OP_CPU_KERNEL(
sequence_erase,
ops::SequenceEraseKernel<paddle::platform::CPUDeviceContext, int32_t>);

@ -0,0 +1,80 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/softmax.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
template <typename DeviceContext, typename T>
class SequenceEraseKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");
auto lod = in->lod();
PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now.");
// auto dims = x->dims();
/*
const size_t level = lod.size() - 1;
PADDLE_ENFORCE_EQ(dims[0], static_cast<int64_t>(lod[level].back()),
"The first dimension of Input(X) should be equal to the "
"sum of all sequences' lengths.");
PADDLE_ENFORCE_EQ(dims[0], x->numel(),
"The width of each timestep in Input(X) of "
"SequenceEraseOp should be 1.");
out->mutable_data<T>(ctx.GetPlace());
*/
auto tokens = ctx.Attr<std::vector<int>>("tokens");
auto in_len = in->numel();
auto in_dat = in->data<T>();
auto lod0 = lod[0];
std::vector<size_t> num_erased(in_len + 1, 0);
for (int64_t i = 1; i < in_len + 1; ++i) {
num_erased[i] = num_erased[i - 1];
if (std::find(tokens.begin(), tokens.end(), in_dat[i - 1]) !=
tokens.end()) {
num_erased[i] += 1;
}
}
std::vector<size_t> out_lod0(lod0.size(), 0);
for (size_t i = 1; i < lod0.size(); ++i) {
out_lod0[i] = lod0[i] - num_erased[lod0[i]];
}
auto out_len = in_len - num_erased[in_len];
out->Resize({static_cast<int64_t>(out_len), 1});
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
for (size_t i = 0; i < in_len; ++i) {
if (num_erased[i] == num_erased[i + 1]) {
out_dat[i - num_erased[i]] = in_dat[i];
}
}
framework::LoD out_lod;
out_lod.push_back(out_lod0);
out->set_lod(out_lod);
}
};
} // namespace operators
} // namespace paddle

@ -0,0 +1,58 @@
import unittest
import numpy as np
from op_test import OpTest
def sequence_erase(in_seq, lod0, tokens):
# num_erased[i]: the number of elments to be removed before #i elements
num_erased = [0] * (len(in_seq) + 1)
for i in range(1, len(in_seq) + 1):
num_erased[i] = num_erased[i - 1]
if in_seq[i - 1] in tokens:
num_erased[i] += 1
# recalculate lod information
new_lod0 = [0] * len(lod0)
for i in range(1, len(lod0)):
new_lod0[i] = lod0[i] - num_erased[lod0[i]]
out_seq = np.zeros(
(len(in_seq) - num_erased[len(in_seq)], 1)).astype("int32")
for i in range(0, len(in_seq)):
if num_erased[i] == num_erased[i + 1]:
out_seq[i - num_erased[i]] = in_seq[i]
# else in_seq[i] needs to be removed
return out_seq, new_lod0
class TestSequenceEraseOp(OpTest):
def setUp(self):
self.op_type = "sequence_erase"
in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
lod = [[0, 5, 15, 30]]
tokens = [2, 5]
out_seq, new_lod0 = sequence_erase(in_seq, lod[0], tokens)
self.attrs = {'tokens': tokens}
self.inputs = {'X': (in_seq, lod)}
self.outputs = {'Out': (out_seq, [new_lod0])}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
"""
in_seq = np.random.randint(0, 10, (30, 1)).astype("int32")
lod0 = [0, 5, 15, 30]
tokens = [2, 5]
out_seq, new_lod = sequence_erase(in_seq, lod0, tokens)
print lod0, new_lod
print("compare")
for i in range(0, len(lod0)-1):
print(np.transpose(in_seq[lod0[i] : lod0[i+1]]))
print(np.transpose(out_seq[new_lod[i] : new_lod[i+1]]))
print("\n")
"""
unittest.main()
Loading…
Cancel
Save