|
|
|
@ -122,7 +122,7 @@ class TestSeqProject(OpTest):
|
|
|
|
|
max_relative_error=0.05,
|
|
|
|
|
no_grad_set=set(['X', 'Filter']))
|
|
|
|
|
|
|
|
|
|
def not_test_check_grad_Filter(self):
|
|
|
|
|
def test_check_grad_Filter(self):
|
|
|
|
|
self.check_grad(
|
|
|
|
|
['Filter'],
|
|
|
|
|
'Out',
|
|
|
|
@ -165,33 +165,34 @@ class TestSeqProject(OpTest):
|
|
|
|
|
self.output_represention = 8 # output feature size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#class TestSeqProjectCase1(TestSeqProject):
|
|
|
|
|
# def init_test_case(self):
|
|
|
|
|
# self.input_row = 11
|
|
|
|
|
# self.context_start = -1
|
|
|
|
|
# self.context_length = 3
|
|
|
|
|
# self.padding_trainable = True
|
|
|
|
|
# self.context_stride = 1
|
|
|
|
|
#
|
|
|
|
|
# self.input_size = [self.input_row, 23]
|
|
|
|
|
# self.lod = [[0, 4, 5, 8, self.input_row]]
|
|
|
|
|
# self.output_represention = 8 # output feature size
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
#class TestSeqProjectCase2(TestSeqProject):
|
|
|
|
|
# def init_test_case(self):
|
|
|
|
|
# self.input_row = 25
|
|
|
|
|
# self.context_start = 2
|
|
|
|
|
# self.context_length = 3
|
|
|
|
|
# self.padding_trainable = True
|
|
|
|
|
# self.context_stride = 1
|
|
|
|
|
#
|
|
|
|
|
# self.input_size = [self.input_row, 23]
|
|
|
|
|
# idx = range(self.input_size[0])
|
|
|
|
|
# del idx[0]
|
|
|
|
|
# self.lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
|
|
|
|
|
# [self.input_size[0]]]
|
|
|
|
|
# self.output_represention = 8 # output feature size
|
|
|
|
|
class TestSeqProjectCase1(TestSeqProject):
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
self.input_row = 11
|
|
|
|
|
self.context_start = -1
|
|
|
|
|
self.context_length = 3
|
|
|
|
|
self.padding_trainable = True
|
|
|
|
|
self.context_stride = 1
|
|
|
|
|
|
|
|
|
|
self.input_size = [self.input_row, 23]
|
|
|
|
|
self.lod = [[0, 4, 5, 8, self.input_row]]
|
|
|
|
|
self.output_represention = 8 # output feature size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSeqProjectCase2(TestSeqProject):
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
self.input_row = 25
|
|
|
|
|
self.context_start = 2
|
|
|
|
|
self.context_length = 3
|
|
|
|
|
self.padding_trainable = True
|
|
|
|
|
self.context_stride = 1
|
|
|
|
|
|
|
|
|
|
self.input_size = [self.input_row, 23]
|
|
|
|
|
idx = range(self.input_size[0])
|
|
|
|
|
del idx[0]
|
|
|
|
|
self.lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
|
|
|
|
|
[self.input_size[0]]]
|
|
|
|
|
self.output_represention = 8 # output feature size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|