Add hinge loss op (#5837)
* Add hinge loss op * Update hinge-loss equation for proper latexrelease/0.11.0
parent
d89061c39c
commit
ea1a643425
@ -0,0 +1,113 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/hinge_loss_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class HingeLossOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Logits"),
|
||||
"Input(Logits) must be initialized.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
||||
"Input(Labels) must be initialized.");
|
||||
|
||||
auto pred_dims = ctx->GetInputDim("Logits");
|
||||
auto label_dims = ctx->GetInputDim("Labels");
|
||||
|
||||
PADDLE_ENFORCE_EQ(pred_dims, label_dims);
|
||||
PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
|
||||
"The rank of Input(Logits) must be 2 and the shape is "
|
||||
"[batch_size, 1].");
|
||||
PADDLE_ENFORCE_EQ(pred_dims[1], 1,
|
||||
"Each row of Input(Logits) contains a real value, "
|
||||
"so the 2nd dimension of Input(Logits) must be 1.");
|
||||
|
||||
ctx->SetOutputDim("Loss", {pred_dims[0], 1});
|
||||
ctx->ShareLoD("Logits", "Loss");
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AttrType>
|
||||
class HingeLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
HingeLossOpMaker(framework::OpProto* proto,
|
||||
framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Logits",
|
||||
"The input value (Logits) of Hinge loss op."
|
||||
"Logits is a 2-D tensor with shape [batch_size, 1].");
|
||||
AddInput("Labels",
|
||||
"The target value (Labels) of Hinge loss op."
|
||||
"Labels is a 2-D tensor with shape [batch_size, 1].");
|
||||
AddOutput("Loss",
|
||||
"The output tensor with shape [batch_size, 1] "
|
||||
"which represents the hinge loss.");
|
||||
AddComment(R"DOC(
|
||||
HingeLoss Operator.
|
||||
|
||||
Let x be a logit (prediction) and y be the actual label. The logit can
|
||||
take any values from (-inf, inf), but the labels should be either -1 or 1.
|
||||
Then, the hinge loss is computed as follows:
|
||||
|
||||
$$
|
||||
L_(x, y) = max(1 - y.x, 0)
|
||||
$$
|
||||
|
||||
Note that the labels passed as input will have values as either 0 or 1.
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class HingeLossGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Logits"),
|
||||
"Input(Logits) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
||||
"Input(Labels) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
|
||||
"Input(Loss@GRAD) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
|
||||
"Input(Logits@GRAD) should not be null.");
|
||||
|
||||
auto pred_dims = ctx->GetInputDim("Logits");
|
||||
auto lab_dims = ctx->GetInputDim("Labels");
|
||||
auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
|
||||
|
||||
PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);
|
||||
|
||||
auto pred_grad_name = framework::GradVarName("Logits");
|
||||
ctx->SetOutputDim(pred_grad_name, pred_dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(hinge_loss, ops::HingeLossOp, ops::HingeLossOpMaker<float>,
|
||||
hinge_loss_grad, ops::HingeLossGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(hinge_loss,
|
||||
ops::HingeLossKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
hinge_loss_grad,
|
||||
ops::HingeLossGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/hinge_loss_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(hinge_loss,
|
||||
ops::HingeLossKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
hinge_loss_grad,
|
||||
ops::HingeLossGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,69 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T, typename AttrType = T>
|
||||
class HingeLossKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* pred = context.Input<framework::Tensor>("Logits");
|
||||
auto* label = context.Input<framework::Tensor>("Labels");
|
||||
auto* loss = context.Output<framework::Tensor>("Loss");
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
|
||||
auto x = framework::EigenVector<T>::Flatten(*pred);
|
||||
auto y = framework::EigenVector<T>::Flatten(*label);
|
||||
loss->mutable_data<T>(context.GetPlace());
|
||||
auto l = framework::EigenVector<T>::Flatten(*loss);
|
||||
l.device(place) =
|
||||
(static_cast<T>(1) - x * (static_cast<T>(2) * y - static_cast<T>(1)))
|
||||
.cwiseMax(static_cast<T>(0));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T, typename AttrType = T>
|
||||
class HingeLossGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* pred = context.Input<framework::Tensor>("Logits");
|
||||
auto* label = context.Input<framework::Tensor>("Labels");
|
||||
auto* dloss =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Loss"));
|
||||
auto* dpred =
|
||||
context.Output<framework::Tensor>(framework::GradVarName("Logits"));
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
|
||||
auto x = framework::EigenVector<T>::Flatten(*pred);
|
||||
auto y = framework::EigenVector<T>::Flatten(*label);
|
||||
auto dl = framework::EigenVector<T>::Flatten(*dloss);
|
||||
|
||||
if (dpred) {
|
||||
dpred->mutable_data<T>(context.GetPlace());
|
||||
auto dx = framework::EigenVector<T>::Flatten(*dpred);
|
||||
auto alt_labels = static_cast<T>(2) * y - static_cast<T>(1);
|
||||
dx.device(place) =
|
||||
dl * ((x * alt_labels) < static_cast<T>(1)).template cast<T>() *
|
||||
(-alt_labels);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,28 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestHingeLossOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = 'hinge_loss'
|
||||
samples_num = 64
|
||||
logits = np.random.uniform(-10, 10, (samples_num, 1)).astype('float32')
|
||||
labels = np.random.randint(0, 2, (samples_num, 1)).astype('float32')
|
||||
|
||||
self.inputs = {
|
||||
'Logits': logits,
|
||||
'Labels': labels,
|
||||
}
|
||||
loss = np.maximum(1.0 - (2 * labels - 1) * logits, 0)
|
||||
self.outputs = {'Loss': loss}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['Logits'], 'Loss', max_relative_error=0.008)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue