Merge remote-tracking branch 'ups/develop' into fea/jitkernel

test=develop
fix-readmd
tensor-tang 7 years ago
commit ea7dc9cbf6

@ -24,6 +24,7 @@ COPY ./paddle/scripts/docker/root/ /root/
RUN apt-get update && \
apt-get install -y --allow-downgrades patchelf \
python3 python3-dev python3-pip \
git python-pip python-dev python-opencv openssh-server bison \
libnccl2=2.1.2-1+cuda8.0 libnccl-dev=2.1.2-1+cuda8.0 \
wget unzip unrar tar xz-utils bzip2 gzip coreutils ntp \
@ -70,24 +71,33 @@ RUN localedef -i en_US -f UTF-8 en_US.UTF-8
# specify sphinx version as 1.5.6 and remove -U option for [pip install -U
# sphinx-rtd-theme] since -U option will cause sphinx being updated to newest
# version(1.7.1 for now), which causes building documentation failed.
RUN easy_install -U pip && \
RUN pip3 install -U wheel && \
pip3 install -U docopt PyYAML sphinx==1.5.6 && \
pip3 install sphinx-rtd-theme==0.1.9 recommonmark && \
easy_install -U pip && \
pip install -U wheel && \
pip install -U docopt PyYAML sphinx==1.5.6 && \
pip install sphinx-rtd-theme==0.1.9 recommonmark
RUN pip install pre-commit 'ipython==5.3.0' && \
RUN pip3 install pre-commit 'ipython==5.3.0' && \
pip3 install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip3 install opencv-python && \
pip install pre-commit 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install opencv-python
#For docstring checker
RUN pip3 install pylint pytest astroid isort
RUN pip install pylint pytest astroid isort LinkChecker
COPY ./python/requirements.txt /root/
RUN pip3 install -r /root/requirements.txt
RUN pip install -r /root/requirements.txt
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev
RUN pip3 install certifi urllib3[secure]
RUN pip install certifi urllib3[secure]

@ -40,7 +40,7 @@ set(OPENBLAS_LIB_SEARCH_PATHS
/usr/local/opt/openblas/lib)
find_path(OPENBLAS_INC_DIR NAMES cblas.h
PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS} NO_DEFAULT_PATH)
find_path(OPENBLAS_LAPACKE_INC_DIR NAMES lapacke.h
PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
find_library(OPENBLAS_LIB NAMES openblas

@ -27,7 +27,7 @@ IF(NOT ${CBLAS_FOUND})
SET(CBLAS_SOURCES_DIR ${THIRD_PARTY_PATH}/openblas)
SET(CBLAS_INSTALL_DIR ${THIRD_PARTY_PATH}/install/openblas)
SET(CBLAS_INCLUDE_DIR "${CBLAS_INSTALL_DIR}/include" CACHE PATH "openblas include directory." FORCE)
SET(CBLAS_INC_DIR "${CBLAS_INSTALL_DIR}/include" CACHE PATH "openblas include directory." FORCE)
SET(CBLAS_LIBRARIES
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
@ -96,7 +96,7 @@ IF(NOT ${CBLAS_FOUND})
ENDIF(NOT WIN32)
SET(CBLAS_PROVIDER openblas)
IF(WITH_C_API)
INSTALL(DIRECTORY ${CBLAS_INCLUDE_DIR} DESTINATION third_party/openblas)
INSTALL(DIRECTORY ${CBLAS_INC_DIR} DESTINATION third_party/openblas)
# Because libopenblas.a is a symbolic link of another library, thus need to
# install the whole directory.
IF(ANDROID)
@ -117,8 +117,8 @@ IF(NOT ${CBLAS_FOUND})
ENDIF(NOT ${CBLAS_FOUND})
MESSAGE(STATUS "BLAS library: ${CBLAS_LIBRARIES}")
MESSAGE(STATUS "BLAS Include: ${CBLAS_INCLUDE_DIR}")
INCLUDE_DIRECTORIES(${CBLAS_INCLUDE_DIR})
MESSAGE(STATUS "BLAS Include: ${CBLAS_INC_DIR}")
INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# FIXME(gangliao): generate cblas target to track all high performance
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)

@ -49,7 +49,7 @@ paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], var
paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0))
paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'use_mkldnn', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, False, None, False, None))
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
paddle.fluid.layers.dynamic_lstm ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None))
paddle.fluid.layers.dynamic_lstmp ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None))
@ -62,14 +62,14 @@ paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label',
paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, False, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, False))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'use_mkldnn', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'use_mkldnn', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, False, None, None, None, False, False))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False))
paddle.fluid.layers.beam_search_decode ArgSpec(args=['ids', 'scores', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.conv2d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d_transpose ArgSpec(args=['input', 'num_filters', 'output_size', 'filter_size', 'padding', 'stride', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, None, 0, 1, 1, None, None, None, True, None, None))
@ -145,21 +145,31 @@ paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, key
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.expand ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_concat ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'out', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None, None))
paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'out', 'axis', 'use_mkldnn', 'act', 'name'], varargs=None, keywords=None, defaults=(None, -1, False, None, None))
paddle.fluid.layers.scale ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None))
paddle.fluid.layers.elementwise_add ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_div ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_sub ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_mul ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_max ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_min ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.elementwise_pow ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None))
paddle.fluid.layers.uniform_random_batch_size_like ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0))
paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32', False))
paddle.fluid.layers.gaussian_random ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.sampling_id ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.gaussian_random_batch_size_like ArgSpec(args=['input', 'shape', 'input_dim_idx', 'output_dim_idx', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0, 0, 0.0, 1.0, 0, 'float32'))
paddle.fluid.layers.sum ArgSpec(args=['x', 'use_mkldnn'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.sum ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.slice ArgSpec(args=['input', 'axes', 'starts', 'ends'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shape ArgSpec(args=['input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_or ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_xor ArgSpec(args=['x', 'y', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.logical_not ArgSpec(args=['x', 'out', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.clip ArgSpec(args=['x', 'min', 'max', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.clip_by_norm ArgSpec(args=['x', 'max_norm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
@ -222,16 +232,6 @@ paddle.fluid.layers.StaticRNN.update_memory ArgSpec(args=['self', 'mem', 'var'],
paddle.fluid.layers.reorder_lod_tensor_by_rank ArgSpec(args=['x', 'rank_table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Print ArgSpec(args=['input', 'first_n', 'message', 'summarize', 'print_tensor_name', 'print_tensor_type', 'print_tensor_shape', 'print_tensor_lod', 'print_phase'], varargs=None, keywords=None, defaults=(-1, None, -1, True, True, True, True, 'both'))
paddle.fluid.layers.is_empty ArgSpec(args=['x', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.mean ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.mul ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.clip_by_norm ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_and ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_or ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_xor ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.logical_not ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.maxout ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.sigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.logsigmoid ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.exp ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
@ -265,9 +265,9 @@ paddle.fluid.layers.anchor_generator ArgSpec(args=['input', 'anchor_sizes', 'asp
paddle.fluid.layers.roi_perspective_transform ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,))
paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True))
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
@ -318,11 +318,11 @@ paddle.fluid.transpiler.RoundRobin.__init__ ArgSpec(args=['self', 'pserver_endpo
paddle.fluid.transpiler.RoundRobin.dispatch ArgSpec(args=['self', 'varlist'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.RoundRobin.reset ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspilerConfig.__init__
paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True, False))
paddle.fluid.nets.simple_img_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'pool_size', 'pool_stride', 'pool_padding', 'pool_type', 'global_pooling', 'conv_stride', 'conv_padding', 'conv_dilation', 'conv_groups', 'param_attr', 'bias_attr', 'act', 'use_cudnn'], varargs=None, keywords=None, defaults=(0, 'max', False, 1, 0, 1, 1, None, None, None, True))
paddle.fluid.nets.sequence_conv_pool ArgSpec(args=['input', 'num_filters', 'filter_size', 'param_attr', 'act', 'pool_type'], varargs=None, keywords=None, defaults=(None, 'sigmoid', 'max'))
paddle.fluid.nets.glu ArgSpec(args=['input', 'dim'], varargs=None, keywords=None, defaults=(-1,))
paddle.fluid.nets.scaled_dot_product_attention ArgSpec(args=['queries', 'keys', 'values', 'num_heads', 'dropout_rate'], varargs=None, keywords=None, defaults=(1, 0.0))
paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn', 'use_mkldnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True, False))
paddle.fluid.nets.img_conv_group ArgSpec(args=['input', 'conv_num_filter', 'pool_size', 'conv_padding', 'conv_filter_size', 'conv_act', 'param_attr', 'conv_with_batchnorm', 'conv_batchnorm_drop_rate', 'pool_stride', 'pool_type', 'use_cudnn'], varargs=None, keywords=None, defaults=(1, 3, None, None, False, 0.0, 1, 'max', True))
paddle.fluid.optimizer.SGDOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'regularization', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.optimizer.SGDOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'momentum', 'use_nesterov', 'regularization', 'name'], varargs=None, keywords=None, defaults=(False, None, None))

@ -1,3 +1,4 @@
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
function(windows_symbolic TARGET)
@ -9,11 +10,23 @@ function(windows_symbolic TARGET)
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc OR NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
add_custom_command(OUTPUT .${src}.cu
# only copy the xx.cu to .xx.cu when the content are modified
set(copy_flag 1)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc SOURCE_STR)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu TARGET_STR)
if (SOURCE_STR STREQUAL TARGET_STR)
set(copy_flag 0)
endif()
endif()
if (copy_flag)
add_custom_command(OUTPUT .${src}.cu
COMMAND ${CMAKE_COMMAND} -E remove ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc" "${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
endif(copy_flag)
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
endforeach()
endfunction()
@ -81,6 +94,8 @@ nv_test(data_device_transform_test SRCS data_device_transform_test.cu
if(WITH_GPU)
if (WIN32)
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
windows_symbolic(hidden_file SRCS data_type_transform.cu)
nv_library(data_type_transform SRCS .data_type_transform.cu DEPS tensor)
add_dependencies(data_type_transform hidden_file)
@ -149,7 +164,7 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(executor.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
else()
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass)
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass elementwise_add_op)
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op)
endif()
if (NOT WIN32)
@ -169,15 +184,8 @@ cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto)
cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
# cc_test(channel_test SRCS channel_test.cc)
cc_test(tuple_test SRCS tuple_test.cc )
if (NOT WIN32)
cc_test(rw_lock_test SRCS rw_lock_test.cc)
endif (NOT WIN32)
# disable test temporarily.
# TODO https://github.com/PaddlePaddle/Paddle/issues/11971
# cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op
# channel_send_op channel_recv_op sum_op select_op elementwise_add_op compare_op
# conditional_block_op while_op assign_op print_op executor proto_desc)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -80,15 +80,15 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
// This is weird but there is really some variables without var_desc
// in computation_op
if (var_desc == nullptr) {
if (compute_op->Node()->Op()->Block()->FindVar(var_name) == nullptr)
continue;
} else {
if (var_desc->Persistable()) continue;
auto var_type = var_desc->Proto()->type().type();
if (var_type != proto::VarType::LOD_TENSOR &&
var_type != proto::VarType::SELECTED_ROWS) {
continue;
}
var_desc = compute_op->Node()->Op()->Block()->FindVar(var_name);
if (var_desc == nullptr) continue;
}
if (var_desc->Persistable()) continue;
auto var_type = var_desc->Proto()->type().type();
if (var_type != proto::VarType::LOD_TENSOR &&
var_type != proto::VarType::SELECTED_ROWS) {
continue;
}
// compute op only runs in one device

@ -14,7 +14,6 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
@ -76,15 +75,13 @@ void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
var->GetMutable<platform::PlaceList>();
} else if (var_type == proto::VarType::READER) {
var->GetMutable<ReaderHolder>();
} else if (var_type == proto::VarType::CHANNEL) {
var->GetMutable<ChannelHolder>();
} else if (var_type == proto::VarType::RAW) {
// GetMutable will be called in operator
} else {
PADDLE_THROW(
"Variable type %d is not in "
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
"LOD_RANK_TABLE, PLACE_LIST, READER, CHANNEL, RAW]",
"LOD_RANK_TABLE, PLACE_LIST, READER, RAW]",
var_type);
}
}

@ -126,7 +126,6 @@ message VarType {
LOD_TENSOR_ARRAY = 13;
PLACE_LIST = 14;
READER = 15;
CHANNEL = 16;
// Any runtime decided variable type is raw
// raw variables should manage their own allocations
// in operators like nccl_op
@ -158,12 +157,6 @@ message VarType {
message ReaderDesc { repeated LoDTensorDesc lod_tensor = 1; }
optional ReaderDesc reader = 5;
message ChannelDesc {
required Type data_type = 1;
required int64 capacity = 2;
}
optional ChannelDesc channel = 6;
message Tuple { repeated Type element_type = 1; }
optional Tuple tuple = 7;
}

@ -1,5 +1,6 @@
set(pass_file ${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h)
file(WRITE ${pass_file} "// Generated by the paddle/fluid/framework/ir/CMakeLists.txt. DO NOT EDIT!\n\n")
file(APPEND ${pass_file} "\#pragma once\n")
file(APPEND ${pass_file} "\#include \"paddle/fluid/framework/ir/pass.h\"\n")
@ -34,6 +35,7 @@ endif ()
pass_library(attention_lstm_fuse_pass inference)
pass_library(infer_clean_graph_pass inference)
pass_library(fc_lstm_fuse_pass inference)
pass_library(embedding_fc_lstm_fuse_pass inference)
pass_library(fc_gru_fuse_pass inference)
pass_library(seq_concat_fc_fuse_pass inference)

@ -0,0 +1,243 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/embedding_fc_lstm_fuse_pass.h"
#include <algorithm>
#include <string>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace framework {
namespace ir {
static int BuildFusion(Graph* graph, const std::string& name_scope,
Scope* scope, bool with_fc_bias) {
GraphPatternDetector gpd;
auto* pattern = gpd.mutable_pattern();
// Build pattern
PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
->assert_is_op_input("lookup_table")
->assert_var_not_persistable();
patterns::Embedding embedding_pattern(pattern, name_scope);
// TODO(jczaja): Intermediate can only be for val that are not used anywhere
// but lookup table output may go into other LSTM (for reverse
// direction)
auto* embedding_out = embedding_pattern(x);
patterns::FC fc_pattern(pattern, name_scope);
// fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
auto* fc_out = fc_pattern(embedding_out, with_fc_bias)->AsIntermediate();
patterns::LSTM lstm_pattern(pattern, name_scope);
lstm_pattern(fc_out);
// Create New OpDesc
auto embedding_lstm_creator = [&](Node* embedding, Node* W, Node* lstm,
Node* input, Node* weight_x, Node* weight_h,
Node* bias, Node* hidden, Node* cell,
Node* xx, Node* fc_bias) {
OpDesc op_desc;
op_desc.SetType("fused_embedding_fc_lstm");
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
SET_IN(Ids, input);
SET_IN(WeightH, weight_h);
// Neet to have this passed as We need Wc data for peephole connections
SET_IN(Bias, bias);
#undef SET_IN
// Multiply embeddings with Weights
PADDLE_ENFORCE(scope);
const std::string& embeddings = patterns::UniqueKey("Embeddings");
auto* embeddings_var = scope->Var(embeddings);
PADDLE_ENFORCE(embeddings_var);
auto* embeddings_tensor =
embeddings_var->GetMutable<framework::LoDTensor>();
// Get WeightX size: [single_embedding, fc_size]
// and embedding size: [dict_size, single_embedding]
// and create new size of embeddings eg. [dict_size , hidden_size]
auto* embedding_var = scope->FindVar(W->Name());
PADDLE_ENFORCE(embedding_var);
const auto& embedding_tensor = embedding_var->Get<framework::LoDTensor>();
const auto& weightx_tensor =
scope->FindVar(weight_x->Name())->Get<framework::LoDTensor>();
embeddings_tensor->Resize(
{embedding_tensor.dims()[0], weightx_tensor.dims()[1]});
// Multiplie embeddings via WeightsX and add bias
auto embedding_data = embedding_tensor.data<float>();
auto weightx_data = weightx_tensor.data<float>();
auto embeddings_data =
embeddings_tensor->mutable_data<float>(platform::CPUPlace());
// Adding biases to GEMM result to be
auto* lstm_bias_var = scope->FindVar(bias->Name());
PADDLE_ENFORCE(lstm_bias_var);
const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
auto alpha = 1.0f;
auto beta = 1.0f;
int m = embedding_tensor.dims()[0];
int n = weightx_tensor.dims()[1];
int k = embedding_tensor.dims()[1];
// Copy only gate biases values (only actual bias data, not peephole
// weights)
std::vector<float> combined_biases;
combined_biases.reserve(n);
std::copy_n(lstm_bias_tensor.data<float>(), n,
std::back_inserter(combined_biases));
if (with_fc_bias) {
// Add FC-bias with LSTM-bias (into GEMM result to be)
auto* fc_bias_var = scope->FindVar(fc_bias->Name());
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
for (int i = 0; i < fc_bias_tensor.numel(); i++) {
combined_biases[i] += fc_bias_tensor.data<float>()[i];
}
}
// broadcast biases
std::vector<float> ones(m, 1.0f);
paddle::operators::math::CBlas<float>::GEMM(
CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, 1, alpha, &ones[0], 1,
&combined_biases[0], n, 0.0f, embeddings_data, n);
// Wx*embeddings + biases
paddle::operators::math::CBlas<float>::GEMM(
CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, k, alpha,
embedding_data, k, weightx_data, n, beta, embeddings_data, n);
op_desc.SetInput("Embeddings", {embeddings});
// Create temp variables.
const std::string BatchedInput = patterns::UniqueKey("BatchedInput");
const std::string BatchedCellPreAct =
patterns::UniqueKey("BatchedCellPreAct");
const std::string BatchedGate = patterns::UniqueKey("BatchedGate");
scope->Var(BatchedInput)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedCellPreAct)->GetMutable<framework::LoDTensor>();
scope->Var(BatchedGate)->GetMutable<framework::LoDTensor>();
op_desc.SetInput("H0", {});
op_desc.SetInput("C0", {});
op_desc.SetOutput("Hidden", {hidden->Name()});
op_desc.SetOutput("Cell", {cell->Name()});
op_desc.SetOutput("XX", {xx->Name()});
op_desc.SetOutput("BatchedGate", {BatchedGate});
op_desc.SetOutput("BatchCellPreAct", {BatchedCellPreAct});
op_desc.SetOutput("BatchedInput", {BatchedInput});
op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
// TODO(TJ): get from attr
op_desc.SetAttr("use_seq", true);
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
#define OP_SET_OUT(x) \
const std::string x = patterns::UniqueKey(#x); \
op_desc.SetOutput(#x, {x}); \
scope->Var(x)->GetMutable<LoDTensor>()
OP_SET_OUT(BatchedCell);
OP_SET_OUT(BatchedHidden);
OP_SET_OUT(ReorderedH0);
OP_SET_OUT(ReorderedC0);
#undef OP_SET_OUT
auto* op = graph->CreateOpNode(&op_desc);
IR_NODE_LINK_TO(input, op);
IR_NODE_LINK_TO(weight_x, op);
IR_NODE_LINK_TO(weight_h, op);
IR_NODE_LINK_TO(bias, op);
IR_NODE_LINK_TO(op, hidden);
return op;
};
int fusion_count{0};
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(lookup_table, lookup_table, embedding_pattern);
GET_IR_NODE_FROM_SUBGRAPH(W, W, embedding_pattern);
GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
// TODO(jczaja): Add support for is_sparse / is_distributed
auto is_sparse = boost::get<bool>(lookup_table->Op()->GetAttr("is_sparse"));
auto is_distributed =
boost::get<bool>(lookup_table->Op()->GetAttr("is_distributed"));
if (is_sparse == true || is_distributed == true) {
return;
}
if (with_fc_bias) {
GET_IR_NODE_FROM_SUBGRAPH(fc_out, Out, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
embedding_lstm_creator(lookup_table, W, lstm, subgraph.at(x), w, Weight,
Bias, Hidden, Cell, fc_out, fc_bias);
// Remove unneeded nodes.
// TODO(jczaja): Proper removing of lookup table
std::unordered_set<const Node*> marked_nodes(
//{lookup_table, mul, lstm, elementwise_add, fc_bias, W});
{mul, lstm, elementwise_add, fc_bias});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
embedding_lstm_creator(lookup_table, W, lstm, subgraph.at(x), w, Weight,
Bias, Hidden, Cell, fc_out, nullptr);
// Remove unneeded nodes.
// TODO(jczaja): Proper removing of lookup table
// std::unordered_set<const Node*> marked_nodes({lookup_table, W, mul,
// lstm});
std::unordered_set<const Node*> marked_nodes({mul, lstm});
GraphSafeRemoveNodes(graph, marked_nodes);
}
++fusion_count;
};
gpd(graph, handler);
return fusion_count;
}
std::unique_ptr<ir::Graph> EmbeddingFCLSTMFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
FusePassBase::Init(name_scope_, graph.get());
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
true /*with_fc_bias*/);
AddStatis(fusion_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(embedding_fc_lstm_fuse_pass,
paddle::framework::ir::EmbeddingFCLSTMFusePass);

@ -11,29 +11,30 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono> // NOLINT
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace inference {
namespace framework {
namespace ir {
// Fusing of Embedding , FC and LSTM op
// Timer for timer
class Timer {
// Just FC without bias
class EmbeddingFCLSTMFusePass : public FusePassBase {
public:
std::chrono::high_resolution_clock::time_point start;
std::chrono::high_resolution_clock::time_point startu;
void tic() { start = std::chrono::high_resolution_clock::now(); }
double toc() {
startu = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> time_span =
std::chrono::duration_cast<std::chrono::duration<double>>(startu -
start);
double used_time_ms = static_cast<double>(time_span.count()) * 1000.0;
return used_time_ms;
}
virtual ~EmbeddingFCLSTMFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
const std::string name_scope_{"embedding_fc_lstm_fuse"};
};
} // namespace inference
} // namespace ir
} // namespace framework
} // namespace paddle

@ -692,6 +692,24 @@ PDNode *patterns::FC::operator()(paddle::framework::ir::PDNode *x,
}
}
PDNode *patterns::Embedding::operator()(PDNode *x) {
x->assert_is_op_input("lookup_table", "Ids");
auto *lookup_table_op =
pattern->NewNode(lookup_table_repr())->assert_is_op("lookup_table");
#define NEW_NODE(arg__, io__) \
auto *arg__ = pattern->NewNode(arg__##_repr()) \
->assert_is_op_##io__("lookup_table", #arg__);
NEW_NODE(W, input);
NEW_NODE(Out, output);
#undef NEW_NODE
lookup_table_op->LinksFrom({x, W});
lookup_table_op->LinksTo({Out});
return Out;
}
PDNode *patterns::LSTM::operator()(PDNode *x) {
x->assert_is_op_input("lstm", "Input");
auto *lstm_op = pattern->NewNode(lstm_repr())->assert_is_op("lstm");

@ -418,6 +418,23 @@ struct FC : public PatternBase {
PATTERN_DECL_NODE(Out);
};
// Embedding
struct Embedding : public PatternBase {
Embedding(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "embedding") {}
PDNode* operator()(PDNode* x);
// declare operator node's name
PATTERN_DECL_NODE(lookup_table);
// Inputs
//
PATTERN_DECL_NODE(Ids);
PATTERN_DECL_NODE(W); // embeddings
// Outputs
PATTERN_DECL_NODE(Out);
};
struct LSTM : public PatternBase {
LSTM(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "lstm") {}

@ -12,11 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/channel.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/string/pretty_log.h"
@ -44,8 +46,6 @@ static void InitializeVariable(Variable *var, proto::VarType::Type var_type) {
var->GetMutable<platform::PlaceList>();
} else if (var_type == proto::VarType::READER) {
var->GetMutable<ReaderHolder>();
} else if (var_type == proto::VarType::CHANNEL) {
var->GetMutable<ChannelHolder>();
} else if (var_type == proto::VarType::RAW) {
// GetMutable will be called in operator
} else {
@ -146,5 +146,22 @@ void NaiveExecutor::CleanFeedFetchOps() {
ops_.swap(ops);
}
void NaiveExecutor::EnableMKLDNN(const ProgramDesc &program) {
#ifdef PADDLE_WITH_MKLDNN
VLOG(3) << "use_mkldnn=True";
for (size_t block_id = 0; block_id < program.Size(); ++block_id) {
auto *block = const_cast<ProgramDesc &>(program).MutableBlock(block_id);
for (auto *op : block->AllOps()) {
if (op->HasAttr("use_mkldnn")) {
op->SetAttr("use_mkldnn", true);
}
}
}
#else
LOG(WARNING)
<< "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
#endif
}
} // namespace framework
} // namespace paddle

@ -14,6 +14,8 @@
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
@ -46,6 +48,8 @@ class NaiveExecutor {
void CleanFeedFetchOps();
void EnableMKLDNN(const ProgramDesc& program);
protected:
void CreateVariables(const ProgramDesc& desc, Scope* scope, int block_id);

@ -132,9 +132,7 @@ void OpProtoAndCheckerMaker::operator()(proto::OpProto* proto,
AddAttr<std::string>(OpNamescopeAttrName(), "Operator name with namesope.")
.SetDefault("");
AddAttr<std::vector<std::string>>(OpCreationCallstackAttrName(),
"Callstack for Op Creatation.")
.SetDefault({});
Validate();
}

@ -46,7 +46,6 @@ class OpProtoAndCheckerMaker {
static const char *OpRoleAttrName() { return "op_role"; }
static const char *OpRoleVarAttrName() { return "op_role_var"; }
static const char *OpNamescopeAttrName() { return "op_namescope"; }
static const char *OpCreationCallstackAttrName() { return "op_callstack"; }
void operator()(proto::OpProto *proto, OpAttrChecker *attr_checker);

@ -14,17 +14,15 @@ limitations under the License. */
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
#include "paddle/fluid/framework/operator.h"
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/profiler.h"
@ -142,54 +140,19 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
}
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
try {
if (VLOG_IS_ON(4)) {
VLOG(4) << place << " " << DebugStringEx(&scope);
}
if (platform::is_gpu_place(place)) {
VLOG(4) << place << " " << DebugStringEx(&scope);
if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("Cannot run operator on place %s", place);
PADDLE_THROW("Cannot run operator on place %s", place);
#else
auto dev_id = boost::get<platform::CUDAPlace>(place).device;
platform::SetDeviceId(dev_id);
auto dev_id = boost::get<platform::CUDAPlace>(place).device;
platform::SetDeviceId(dev_id);
#endif
}
if (platform::IsProfileEnabled()) {
platform::DeviceContextPool& pool =
platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
}
RunImpl(scope, place);
if (VLOG_IS_ON(3)) {
VLOG(3) << place << " " << DebugStringEx(&scope);
}
} catch (platform::EnforceNotMet exception) {
if (Attrs().count("sub_block") != 0) {
throw exception;
}
auto& callstack = Attr<std::vector<std::string>>(
OpProtoAndCheckerMaker::OpCreationCallstackAttrName());
if (callstack.empty()) {
throw exception;
}
std::ostringstream sout;
sout << "Invoke operator " << Type() << " error.\n";
sout << "Python Callstacks: \n";
for (auto& line : callstack) {
sout << line;
}
sout << "C++ Callstacks: \n";
sout << exception.err_str_;
exception.err_str_ = sout.str();
throw exception;
} catch (...) {
std::rethrow_exception(std::current_exception());
}
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
RunImpl(scope, place);
VLOG(3) << place << " " << DebugStringEx(&scope);
}
bool OperatorBase::HasInputs(const std::string& name) const {
@ -217,7 +180,7 @@ const std::vector<std::string>& OperatorBase::Inputs(
}
bool OperatorBase::HasOutputs(const std::string& name) const {
if (outputs_.end() != outputs_.find(name)) {
if (outputs_.find(name) != outputs_.end()) {
return true;
} else {
return false;

@ -156,10 +156,12 @@ ParallelExecutor::ParallelExecutor(
params, member_->local_scopes_, member_->use_cuda_);
#endif
// If the loss_var_name is given, the number of graph should be only one.
if (loss_var_name.size()) {
PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
"The number of graph should be only one");
if (VLOG_IS_ON(5)) {
// If the loss_var_name is given, the number of graph should be only one.
if (loss_var_name.size()) {
PADDLE_ENFORCE_EQ(ir::GraphNum(*graph), 1,
"The number of graph should be only one");
}
}
if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
@ -248,6 +250,13 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
#ifdef PADDLE_WITH_CUDA
if (!gcs_.empty()) {
ResetReferenceCount();
for (auto &pair : cur_ref_cnts_) {
auto &name_map = *(pair.second);
for (auto &fetch_name : fetch_tensors) {
name_map.erase(fetch_name);
}
name_map.erase(fetched_var_name);
}
}
#endif
auto fetch_data = member_->executor_->Run(fetch_tensors);

@ -46,6 +46,7 @@ struct RWLock {
private:
pthread_rwlock_t lock_;
};
// TODO(paddle-dev): Support RWLock for WIN32 for correctness.
#else
// https://stackoverflow.com/questions/7125250/making-pthread-rwlock-wrlock-recursive
// In windows, rw_lock seems like a hack. Use empty object and do nothing.

@ -20,13 +20,6 @@ limitations under the License. */
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/string/printf.h"
// The mutex is not needed by training and inference, only for distribution.
#if PADDLE_WITH_DISTRIBUTE
#define WITH_LOCK 1
#else
#define WITH_LOCK 0
#endif
DEFINE_bool(benchmark, false,
"Doing memory benchmark. It will make deleting scope synchronized, "
"and add some memory usage logs."
@ -56,24 +49,18 @@ int64_t GetEagerDeletionThreshold() {
Scope::~Scope() { DropKids(); }
Scope& Scope::NewScope() const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
kids_.push_back(new Scope(this));
return *kids_.back();
}
Variable* Scope::Var(const std::string& name) {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
return VarInternal(name);
}
Variable* Scope::Var(std::string* name) {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
auto new_name = string::Sprintf("%p.%d", this, vars_.size());
if (name != nullptr) {
*name = new_name;
@ -82,39 +69,29 @@ Variable* Scope::Var(std::string* name) {
}
Variable* Scope::FindVar(const std::string& name) const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
return FindVarInternal(name);
}
const Scope* Scope::FindScope(const Variable* var) const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
return FindScopeInternal(var);
}
void Scope::DropKids() {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
for (Scope* s : kids_) delete s;
kids_.clear();
}
bool Scope::HasKid(const Scope* scope) const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
return it != this->kids_.end();
}
std::vector<std::string> Scope::LocalVarNames() const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
std::vector<std::string> known_vars;
known_vars.reserve(this->vars_.size());
for (auto& p : vars_) {
@ -124,9 +101,7 @@ std::vector<std::string> Scope::LocalVarNames() const {
}
void Scope::DeleteScope(Scope* scope) const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope);
this->kids_.erase(it);
@ -139,9 +114,7 @@ void Scope::DeleteScope(Scope* scope) const {
}
void Scope::EraseVars(const std::vector<std::string>& var_names) {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
std::set<std::string> var_set(var_names.begin(), var_names.end());
for (auto it = vars_.begin(); it != vars_.end();) {
if (var_set.find(it->first) != var_set.end()) {
@ -154,16 +127,12 @@ void Scope::EraseVars(const std::vector<std::string>& var_names) {
void Scope::Rename(const std::string& origin_name,
const std::string& new_name) const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
RenameInternal(origin_name, new_name);
}
std::string Scope::Rename(const std::string& origin_name) const {
#if WITH_LOCK
std::unique_lock<std::mutex> lock(mutex_);
#endif
auto new_name = string::Sprintf("%p.%d", this, vars_.size());
RenameInternal(origin_name, new_name);
return new_name;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save