parent
0a180584e6
commit
eb2f7ed21b
@ -1,21 +0,0 @@
|
||||
|
||||
#ifdef _WIN32
|
||||
#ifdef inference_icnet_EXPORTS
|
||||
#define API_REFERENCE extern "C" __declspec(dllexport)
|
||||
#else
|
||||
#define API_REFERENCE extern "C" __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
#define API_REFERENCE
|
||||
#endif
|
||||
|
||||
//API_REFERENCE void * init_predictor();
|
||||
//API_REFERENCE void destory_predictor(void *handle);
|
||||
//API_REFERENCE void predict(void *handle, int n);
|
||||
|
||||
API_REFERENCE void * init_predictor(const char* prog_file,
|
||||
const char* param_file, const float fraction_of_gpu_memory,
|
||||
const bool use_gpu, const int device);
|
||||
API_REFERENCE void predict(void* handle, float* input, const int channel, const int height,
|
||||
const int width, int64_t** output, int* output_length, int batch_size);
|
||||
API_REFERENCE void destory_predictor(void *handle);
|
@ -1,125 +0,0 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#define GOOGLE_GLOG_DLL_DECL
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
#include <chrono>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include "paddle/fluid/inference/paddle_inference_api.h"
|
||||
|
||||
namespace paddle {
|
||||
NativeConfig GetConfig() {
|
||||
NativeConfig config;
|
||||
|
||||
// config.model_dir = FLAGS_dirname;
|
||||
config.prog_file = "hs_lb_without_bn_cudnn/__model__";
|
||||
config.param_file = "hs_lb_without_bn_cudnn/__params__";
|
||||
// config.prog_file = "hs_lb_without_bn_cuda/__model__";
|
||||
// config.param_file = "hs_lb_without_bn_cuda/__params__";
|
||||
config.fraction_of_gpu_memory = 0.0;
|
||||
config.use_gpu = true;
|
||||
config.device = 0;
|
||||
return config;
|
||||
}
|
||||
|
||||
using Time = decltype(std::chrono::high_resolution_clock::now());
|
||||
Time time() { return std::chrono::high_resolution_clock::now(); };
|
||||
double time_diff(Time t1, Time t2) {
|
||||
typedef std::chrono::microseconds ms;
|
||||
auto diff = t2 - t1;
|
||||
ms counter = std::chrono::duration_cast<ms>(diff);
|
||||
return counter.count() / 1000.0;
|
||||
}
|
||||
|
||||
void test_naive(int batch_size) {
|
||||
NativeConfig config = GetConfig();
|
||||
auto predictor = CreatePaddlePredictor<NativeConfig>(config);
|
||||
int height = 449;
|
||||
int width = 581;
|
||||
|
||||
// =============read file list =============
|
||||
std::ifstream infile("new_file.list");
|
||||
std::string temp_s;
|
||||
std::vector<std::string> all_files;
|
||||
while (!infile.eof()) {
|
||||
infile >> temp_s;
|
||||
all_files.push_back(temp_s);
|
||||
}
|
||||
|
||||
// size_t file_num = all_files.size();
|
||||
infile.close();
|
||||
// =============read file list =============
|
||||
for (size_t f_k = 0; f_k < 1; f_k++) {
|
||||
std::ifstream in_img(all_files[f_k]);
|
||||
std::cout << all_files[f_k] << std::endl;
|
||||
float temp_v;
|
||||
|
||||
float sum_n = 0.0;
|
||||
std::vector<float> data;
|
||||
while (!in_img.eof()) {
|
||||
in_img >> temp_v;
|
||||
data.push_back(float(temp_v));
|
||||
// std::cout << temp_v << " ";
|
||||
sum_n += temp_v;
|
||||
}
|
||||
|
||||
in_img.close();
|
||||
std::cout << "sum: " << sum_n << std::endl;
|
||||
|
||||
PaddleTensor tensor;
|
||||
tensor.shape = std::vector<int>({batch_size, 3, height, width});
|
||||
tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width);
|
||||
std::copy(data.begin(), data.end(),
|
||||
static_cast<float*>(tensor.data.data()));
|
||||
tensor.dtype = PaddleDType::FLOAT32;
|
||||
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
|
||||
PaddleTensor tensor_out;
|
||||
|
||||
std::vector<PaddleTensor> outputs(1, tensor_out);
|
||||
// predictor->Run(paddle_tensor_feeds, &outputs, batch_size);
|
||||
std::cout << "start predict123:" << std::endl;
|
||||
auto time1 = time();
|
||||
int steps = 100;
|
||||
for (size_t i = 0; i < steps; i++) {
|
||||
if (i == 5) time1 = time();
|
||||
predictor->Run(paddle_tensor_feeds, &outputs, batch_size);
|
||||
}
|
||||
|
||||
auto time2 = time();
|
||||
std::ofstream ofresult("naive_test_result.txt", std::ios::app);
|
||||
|
||||
std::cout << "batch: " << batch_size
|
||||
<< " predict cost: " << time_diff(time1, time2) / steps << "ms"
|
||||
<< std::endl;
|
||||
std::cout << outputs.size() << std::endl;
|
||||
int64_t* data_o = static_cast<int64_t*>(outputs[0].data.data());
|
||||
int64_t sum_out = 0;
|
||||
for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t); ++j) {
|
||||
ofresult << std::to_string(data_o[j]) << " ";
|
||||
sum_out += data_o[j];
|
||||
}
|
||||
std::cout << "sum_out " << sum_out << std::endl;
|
||||
ofresult << std::endl;
|
||||
ofresult.close();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
// google::ParseCommandLineFlags(&argc, &argv, true);
|
||||
paddle::test_naive(1 << 0);
|
||||
return 0;
|
||||
}
|
@ -1,146 +0,0 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#define GOOGLE_GLOG_DLL_DECL
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
//#include <gtest/gtest.h>
|
||||
#include <chrono>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <thread> // NOLINT
|
||||
#include <utility>
|
||||
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
||||
|
||||
#define ASSERT_TRUE(x) x
|
||||
#define ASSERT_EQ(x, y) assert(x == y)
|
||||
|
||||
// DEFINE_string(dirname, "./LB_icnet_model",
|
||||
// "Directory of the inference model.");
|
||||
namespace paddle {
|
||||
NativeConfig GetConfig() {
|
||||
NativeConfig config;
|
||||
config.prog_file = "./hs_lb_without_bn_cuda/__model__";
|
||||
config.param_file = "./hs_lb_without_bn_cuda/__params__";
|
||||
config.fraction_of_gpu_memory = 0.0;
|
||||
config.use_gpu = true;
|
||||
config.device = 0;
|
||||
return config;
|
||||
}
|
||||
|
||||
using Time = decltype(std::chrono::high_resolution_clock::now());
|
||||
Time time() { return std::chrono::high_resolution_clock::now(); };
|
||||
double time_diff(Time t1, Time t2) {
|
||||
typedef std::chrono::microseconds ms;
|
||||
auto diff = t2 - t1;
|
||||
ms counter = std::chrono::duration_cast<ms>(diff);
|
||||
return counter.count() / 1000.0;
|
||||
}
|
||||
|
||||
void test_naive(int batch_size, std::string model_path) {
|
||||
NativeConfig config = GetConfig();
|
||||
int height = 449;
|
||||
int width = 581;
|
||||
std::vector<float> data;
|
||||
for (int i = 0; i < 3 * height * width; ++i) {
|
||||
data.push_back(0.0);
|
||||
}
|
||||
|
||||
// read data
|
||||
// std::ifstream infile("new_file.list");
|
||||
// std::string temp_s;
|
||||
// std::vector<std::string> all_files;
|
||||
// while (!infile.eof()) {
|
||||
// infile >> temp_s;
|
||||
// all_files.push_back(temp_s);
|
||||
// }
|
||||
|
||||
// // size_t file_num = all_files.size();
|
||||
// infile.close();
|
||||
// // =============read file list =============
|
||||
// for (size_t f_k = 0; f_k < 1; f_k++) {
|
||||
// std::ifstream in_img(all_files[f_k]);
|
||||
// std::cout << all_files[f_k] << std::endl;
|
||||
// float temp_v;
|
||||
|
||||
// float sum_n = 0.0;
|
||||
// std::vector<float> data;
|
||||
// while (!in_img.eof()) {
|
||||
// in_img >> temp_v;
|
||||
// data.push_back(float(temp_v));
|
||||
|
||||
// sum_n += temp_v;
|
||||
// }
|
||||
// in_img.close();
|
||||
// std::cout << "sum: " << sum_n << std::endl;
|
||||
|
||||
PaddleTensor tensor;
|
||||
tensor.shape = std::vector<int>({batch_size, 3, height, width});
|
||||
tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width);
|
||||
std::copy(data.begin(), data.end(), static_cast<float*>(tensor.data.data()));
|
||||
tensor.dtype = PaddleDType::FLOAT32;
|
||||
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
|
||||
|
||||
constexpr int num_jobs = 5; // each job run 1 batch
|
||||
std::vector<std::thread> threads;
|
||||
// using PtrPred = std::vector<std::unique_ptr<PaddlePredictor>>;
|
||||
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
|
||||
for (int tid = 0; tid < num_jobs; ++tid) {
|
||||
auto& pred = CreatePaddlePredictor<NativeConfig>(config);
|
||||
predictors.emplace_back(std::move(pred));
|
||||
}
|
||||
|
||||
using namespace std::chrono_literals;
|
||||
// std::this_thread::sleep_for(std::chrono::seconds(20));
|
||||
std::cout << "before start predict";
|
||||
|
||||
int epoches = 100000;
|
||||
for (int tid = 0; tid < num_jobs; ++tid) {
|
||||
threads.emplace_back([&, tid]() {
|
||||
// auto predictor = CreatePaddlePredictor<NativeConfig>(config);
|
||||
auto& predictor = predictors[tid];
|
||||
// auto& predictor = predictors[tid];
|
||||
// auto predictor = preds[tid];
|
||||
// std::this_thread::sleep_for(std::chrono::seconds(20));
|
||||
PaddleTensor tensor_out;
|
||||
std::vector<PaddleTensor> outputs(1, tensor_out);
|
||||
for (size_t i = 0; i < epoches; i++) {
|
||||
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
|
||||
VLOG(0) << "tid : " << tid << " run: " << i << "finished";
|
||||
// std::cout <<"tid : " << tid << " run: " << i << "finished" <<
|
||||
// std::endl;
|
||||
ASSERT_EQ(outputs.size(), 1UL);
|
||||
// int64_t* data_o = static_cast<int64_t*>(outputs[0].data.data());
|
||||
// int64_t sum_out = 0;
|
||||
// for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t);
|
||||
// ++j) {
|
||||
// sum_out += data_o[j];
|
||||
// }
|
||||
// std::cout << "tid : " << tid << "pass : " << i << " " << sum_out
|
||||
// << std::endl;
|
||||
}
|
||||
});
|
||||
}
|
||||
for (int i = 0; i < num_jobs; ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
// }
|
||||
} // namespace paddle
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
paddle::test_naive(1 << 0, "");
|
||||
return 0;
|
||||
}
|
Loading…
Reference in new issue