|
|
|
@ -5278,32 +5278,32 @@ def default_startup_program():
|
|
|
|
|
"""
|
|
|
|
|
Get default/global startup program.
|
|
|
|
|
|
|
|
|
|
The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
|
|
|
|
|
`NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
|
|
|
|
|
initialize them by the OPs in startup :ref:`api_fluid_Program` . The :ref:`api_fluid_layers` function will
|
|
|
|
|
append these initialization operators into startup program.
|
|
|
|
|
The :code:`paddle.nn` function will append the initialization operators into startup program.
|
|
|
|
|
The :code:`startup_program` will initialize the parameters by the OPs.
|
|
|
|
|
|
|
|
|
|
This method will return the default or the current startup program. Users can use
|
|
|
|
|
:ref:`api_paddle_fluid_framework_program_guard` to switch :ref:`api_paddle_fluid_framework_Program` .
|
|
|
|
|
|
|
|
|
|
This method will return the :code:`default` or the :code:`current` startup
|
|
|
|
|
program. Users can use :ref:`api_fluid_program_guard` to switch :ref:`api_fluid_Program` .
|
|
|
|
|
|
|
|
|
|
Returns: current default startup :ref:`api_fluid_Program`
|
|
|
|
|
Returns:
|
|
|
|
|
Program: current default startup program.
|
|
|
|
|
|
|
|
|
|
Returns type: :ref:`api_fluid_Program`
|
|
|
|
|
Returns type:
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
|
|
|
|
|
x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
|
|
|
|
|
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
|
|
|
|
|
z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
main_program = paddle.static.Program()
|
|
|
|
|
startup_program = paddle.static.Program()
|
|
|
|
|
with paddle.static.program_guard(main_program=main_program, startup_program=startup_program):
|
|
|
|
|
x = paddle.data(name="x", shape=[-1, 784], dtype='float32')
|
|
|
|
|
y = paddle.data(name="y", shape=[-1, 1], dtype='int32')
|
|
|
|
|
z = paddle.static.nn.fc(name="fc", input=x, size=10, act="relu")
|
|
|
|
|
|
|
|
|
|
print("main program is: {}".format(fluid.default_main_program()))
|
|
|
|
|
print("start up program is: {}".format(fluid.default_startup_program()))
|
|
|
|
|
print("main program is: {}".format(paddle.static.default_main_program()))
|
|
|
|
|
print("start up program is: {}".format(paddle.static.default_startup_program()))
|
|
|
|
|
"""
|
|
|
|
|
return _startup_program_
|
|
|
|
|
|
|
|
|
@ -5311,52 +5311,53 @@ def default_startup_program():
|
|
|
|
|
def default_main_program():
|
|
|
|
|
"""
|
|
|
|
|
This API can be used to get ``default main program`` which store the
|
|
|
|
|
descriptions of ``op`` and ``variable``.
|
|
|
|
|
descriptions of Ops and tensors.
|
|
|
|
|
|
|
|
|
|
For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add``
|
|
|
|
|
``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program``
|
|
|
|
|
For example ``z = paddle.elementwise_add(x, y)`` will create a new ``elementwise_add``
|
|
|
|
|
Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
|
|
|
|
|
|
|
|
|
|
The ``default_main_program`` is the default value for ``Program`` parameter in
|
|
|
|
|
a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
|
|
|
|
|
The ``default main program`` is the default value for ``Program`` parameter in
|
|
|
|
|
a lot of APIs. For example, the :code:`Executor.run()` will execute the
|
|
|
|
|
:code:`default_main_program` when the program is not specified.
|
|
|
|
|
|
|
|
|
|
If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
|
|
|
|
|
If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
:ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
|
|
|
|
|
Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
# Sample Network:
|
|
|
|
|
data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
|
|
|
|
|
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
|
|
|
|
|
data = paddle.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
|
|
|
|
|
label = paddle.data(name='label', shape=[None, 1], dtype='int64')
|
|
|
|
|
|
|
|
|
|
conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
|
|
|
|
|
bn1 = fluid.layers.batch_norm(conv1, act='relu')
|
|
|
|
|
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
|
|
|
|
|
conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
|
|
|
|
|
bn2 = fluid.layers.batch_norm(conv2, act='relu')
|
|
|
|
|
pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
|
|
|
|
|
conv1 = paddle.static.nn.conv2d(data, 4, 5, 1, act=None)
|
|
|
|
|
bn1 = paddle.static.nn.batch_norm(conv1, act='relu')
|
|
|
|
|
pool1 = paddle.nn.functional.pool2d(bn1, 2, 'max', 2)
|
|
|
|
|
conv2 = paddle.static.nn.conv2d(pool1, 16, 5, 1, act=None)
|
|
|
|
|
bn2 = paddle.static.nn.batch_norm(conv2, act='relu')
|
|
|
|
|
pool2 = paddle.nn.functional.pool2d(bn2, 2, 'max', 2)
|
|
|
|
|
|
|
|
|
|
fc1 = fluid.layers.fc(pool2, size=50, act='relu')
|
|
|
|
|
fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
|
|
|
|
|
fc1 = paddle.static.nn.fc(pool2, size=50, act='relu')
|
|
|
|
|
fc2 = paddle.static.nn.fc(fc1, size=102, act='softmax')
|
|
|
|
|
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=fc2, label=label)
|
|
|
|
|
loss = fluid.layers.mean(loss)
|
|
|
|
|
opt = fluid.optimizer.Momentum(
|
|
|
|
|
loss = paddle.nn.functional.loss.cross_entropy(input=fc2, label=label)
|
|
|
|
|
loss = paddle.mean(loss)
|
|
|
|
|
opt = paddle.optimizer.Momentum(
|
|
|
|
|
learning_rate=0.1,
|
|
|
|
|
momentum=0.9,
|
|
|
|
|
regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
|
weight_decay=paddle.regularizer.L2Decay(1e-4))
|
|
|
|
|
opt.minimize(loss)
|
|
|
|
|
|
|
|
|
|
#print the number of blocks in the program, 1 in this case
|
|
|
|
|
print(fluid.default_main_program().num_blocks)
|
|
|
|
|
print(paddle.static.default_main_program().num_blocks) #[1]
|
|
|
|
|
|
|
|
|
|
#print the description of variable 'image'
|
|
|
|
|
print(fluid.default_main_program().blocks[0].var('image'))
|
|
|
|
|
print(paddle.static.default_main_program())
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
return _main_program_
|
|
|
|
|