|
|
|
@ -15,6 +15,7 @@ limitations under the License. */
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
|
#include "paddle/fluid/framework/ddim.h"
|
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
|
|
|
|
|
@ -54,10 +55,6 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto scales = ctx.MultiInput<framework::Tensor>("Scales");
|
|
|
|
|
auto* out = ctx.Output<framework::Tensor>("Out");
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(scales[0]->numel(), in->dims()[0],
|
|
|
|
|
"The number of first scale values must be the same with "
|
|
|
|
|
"first dimension value of Input(X).");
|
|
|
|
|
|
|
|
|
|
auto quant_bits = ctx.Attr<std::vector<int>>("quant_bits");
|
|
|
|
|
int max_range = std::pow(2, quant_bits[0] - 1) - 1;
|
|
|
|
|
|
|
|
|
@ -65,15 +62,38 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
|
|
|
|
|
out->mutable_data<T>(dev_ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto dequant = DequantizeFunctor<DeviceContext, T>();
|
|
|
|
|
for (int64_t i = 0; i < in->dims()[0]; i++) {
|
|
|
|
|
framework::Tensor one_channel_in = in->Slice(i, i + 1);
|
|
|
|
|
framework::Tensor one_channel_out = out->Slice(i, i + 1);
|
|
|
|
|
framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1);
|
|
|
|
|
dequant(dev_ctx, &one_channel_in, &one_channel_scale,
|
|
|
|
|
static_cast<T>(max_range), &one_channel_out);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (scales.size() == 2) {
|
|
|
|
|
if (scales.size() == 1) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
scales[0]->numel(), in->dims()[0],
|
|
|
|
|
"The number of first scale values must be the same with "
|
|
|
|
|
"first dimension value of Input(X) when the `Scales` has only one "
|
|
|
|
|
"element.");
|
|
|
|
|
for (int64_t i = 0; i < in->dims()[0]; i++) {
|
|
|
|
|
framework::Tensor one_channel_in = in->Slice(i, i + 1);
|
|
|
|
|
framework::Tensor one_channel_out = out->Slice(i, i + 1);
|
|
|
|
|
framework::Tensor one_channel_scale = scales[0]->Slice(i, i + 1);
|
|
|
|
|
dequant(dev_ctx, &one_channel_in, &one_channel_scale,
|
|
|
|
|
static_cast<T>(max_range), &one_channel_out);
|
|
|
|
|
}
|
|
|
|
|
} else if (scales.size() == 2) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
scales[0]->numel(), in->dims()[1],
|
|
|
|
|
"The number of first scale values must be the same with "
|
|
|
|
|
"second dimension value of Input(X) when the `Scales` has two "
|
|
|
|
|
"elements.");
|
|
|
|
|
for (int64_t i = 0; i < in->dims()[0]; i++) {
|
|
|
|
|
framework::Tensor one_batch_in = in->Slice(i, i + 1).Resize(
|
|
|
|
|
framework::slice_ddim(in->dims(), 1, in->dims().size()));
|
|
|
|
|
framework::Tensor one_batch_out = out->Slice(i, i + 1).Resize(
|
|
|
|
|
framework::slice_ddim(out->dims(), 1, out->dims().size()));
|
|
|
|
|
for (int64_t j = 0; j < in->dims()[1]; j++) {
|
|
|
|
|
framework::Tensor one_channel_in = one_batch_in.Slice(j, j + 1);
|
|
|
|
|
framework::Tensor one_channel_out = one_batch_out.Slice(j, j + 1);
|
|
|
|
|
framework::Tensor one_channel_scale = scales[0]->Slice(j, j + 1);
|
|
|
|
|
dequant(dev_ctx, &one_channel_in, &one_channel_scale,
|
|
|
|
|
static_cast<T>(max_range), &one_channel_out);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
scales[1]->numel(), 1,
|
|
|
|
|
"The second scale tensor should only have one value at now.");
|
|
|
|
|