|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
@ -21,19 +21,12 @@ limitations under the License. */
|
|
|
|
|
|
|
|
|
|
DEFINE_string(dirname, "", "Directory of the inference model.");
|
|
|
|
|
|
|
|
|
|
TEST(recognize_digits, CPU) {
|
|
|
|
|
if (FLAGS_dirname.empty()) {
|
|
|
|
|
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
|
|
|
|
std::string dirname = FLAGS_dirname;
|
|
|
|
|
|
|
|
|
|
// 0. Initialize all the devices
|
|
|
|
|
paddle::framework::InitDevices();
|
|
|
|
|
|
|
|
|
|
template <typename Place, typename T>
|
|
|
|
|
void TestInference(const std::string& dirname,
|
|
|
|
|
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
|
|
|
|
|
std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
|
|
|
|
|
// 1. Define place, executor and scope
|
|
|
|
|
auto place = paddle::platform::CPUPlace();
|
|
|
|
|
auto place = Place();
|
|
|
|
|
auto executor = paddle::framework::Executor(place);
|
|
|
|
|
auto* scope = new paddle::framework::Scope();
|
|
|
|
|
|
|
|
|
@ -49,37 +42,77 @@ TEST(recognize_digits, CPU) {
|
|
|
|
|
|
|
|
|
|
// 4. Prepare inputs
|
|
|
|
|
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
|
|
|
|
|
paddle::framework::LoDTensor input;
|
|
|
|
|
srand(time(0));
|
|
|
|
|
float* input_ptr =
|
|
|
|
|
input.mutable_data<float>({1, 28, 28}, paddle::platform::CPUPlace());
|
|
|
|
|
for (int i = 0; i < 784; ++i) {
|
|
|
|
|
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
|
|
|
|
|
for (size_t i = 0; i < feed_target_names.size(); ++i) {
|
|
|
|
|
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
|
|
|
|
|
feed_targets[feed_target_names[i]] = cpu_feeds[i];
|
|
|
|
|
}
|
|
|
|
|
feed_targets[feed_target_names[0]] = &input;
|
|
|
|
|
|
|
|
|
|
// 5. Define Tensor to get the outputs
|
|
|
|
|
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
|
|
|
|
|
paddle::framework::LoDTensor output;
|
|
|
|
|
fetch_targets[fetch_target_names[0]] = &output;
|
|
|
|
|
for (size_t i = 0; i < fetch_target_names.size(); ++i) {
|
|
|
|
|
fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// 6. Run the inference program
|
|
|
|
|
executor.Run(*inference_program, scope, feed_targets, fetch_targets);
|
|
|
|
|
|
|
|
|
|
// 7. Use the output as your expect.
|
|
|
|
|
LOG(INFO) << output.dims();
|
|
|
|
|
std::stringstream ss;
|
|
|
|
|
ss << "result:";
|
|
|
|
|
float* output_ptr = output.data<float>();
|
|
|
|
|
for (int j = 0; j < output.numel(); ++j) {
|
|
|
|
|
ss << " " << output_ptr[j];
|
|
|
|
|
}
|
|
|
|
|
LOG(INFO) << ss.str();
|
|
|
|
|
|
|
|
|
|
delete scope;
|
|
|
|
|
delete engine;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST(inference, recognize_digits) {
|
|
|
|
|
if (FLAGS_dirname.empty()) {
|
|
|
|
|
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
|
|
|
|
|
|
|
|
|
|
// 0. Initialize all the devices
|
|
|
|
|
paddle::framework::InitDevices();
|
|
|
|
|
|
|
|
|
|
paddle::framework::LoDTensor input;
|
|
|
|
|
srand(time(0));
|
|
|
|
|
float* input_ptr =
|
|
|
|
|
input.mutable_data<float>({1, 28, 28}, paddle::platform::CPUPlace());
|
|
|
|
|
for (int i = 0; i < 784; ++i) {
|
|
|
|
|
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
|
|
|
|
|
}
|
|
|
|
|
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
|
|
|
|
|
cpu_feeds.push_back(&input);
|
|
|
|
|
|
|
|
|
|
paddle::framework::LoDTensor output1;
|
|
|
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
|
|
|
|
|
cpu_fetchs1.push_back(&output1);
|
|
|
|
|
|
|
|
|
|
// Run inference on CPU
|
|
|
|
|
TestInference<paddle::platform::CPUPlace, float>(
|
|
|
|
|
FLAGS_dirname, cpu_feeds, cpu_fetchs1);
|
|
|
|
|
LOG(INFO) << output1.dims();
|
|
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
|
paddle::framework::LoDTensor output2;
|
|
|
|
|
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
|
|
|
|
|
cpu_fetchs2.push_back(&output2);
|
|
|
|
|
|
|
|
|
|
// Run inference on CUDA GPU
|
|
|
|
|
TestInference<paddle::platform::CUDAPlace, float>(
|
|
|
|
|
FLAGS_dirname, cpu_feeds, cpu_fetchs2);
|
|
|
|
|
LOG(INFO) << output2.dims();
|
|
|
|
|
|
|
|
|
|
EXPECT_EQ(output1.dims(), output2.dims());
|
|
|
|
|
EXPECT_EQ(output1.numel(), output2.numel());
|
|
|
|
|
|
|
|
|
|
float err = 1E-3;
|
|
|
|
|
int count = 0;
|
|
|
|
|
for (int64_t i = 0; i < output1.numel(); ++i) {
|
|
|
|
|
if (fabs(output1.data<float>()[i] - output2.data<float>()[i]) > err) {
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
|
google::ParseCommandLineFlags(&argc, &argv, false);
|
|
|
|
|
testing::InitGoogleTest(&argc, argv);
|
|
|
|
|