|
|
|
@ -15,6 +15,7 @@ import os
|
|
|
|
|
import cPickle as pickle
|
|
|
|
|
|
|
|
|
|
from paddle.v2.fluid.framework import Program, Parameter, default_main_program, Variable
|
|
|
|
|
from . import core
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
|
'save_vars',
|
|
|
|
@ -244,10 +245,10 @@ def save_inference_model(dirname,
|
|
|
|
|
# Save only programDesc of inference_program in binary format
|
|
|
|
|
# in another file: __model__.dat
|
|
|
|
|
global_block = inference_program.global_block()
|
|
|
|
|
feed_var = global_blok.create_var(
|
|
|
|
|
feed_var = global_block.create_var(
|
|
|
|
|
name='feed', type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True)
|
|
|
|
|
|
|
|
|
|
for i, name in enumerated(feeded_var_names):
|
|
|
|
|
for i, name in enumerate(feeded_var_names):
|
|
|
|
|
out = global_block.var(name)
|
|
|
|
|
global_block.prepend_op(
|
|
|
|
|
type='feed',
|
|
|
|
@ -258,10 +259,10 @@ def save_inference_model(dirname,
|
|
|
|
|
fetch_var = global_block.create_var(
|
|
|
|
|
name='fetch', type=core.VarDesc.VarType.FETCH_LIST, persistable=True)
|
|
|
|
|
|
|
|
|
|
for i, name in enumerated(fetch_var_names):
|
|
|
|
|
for i, name in enumerate(fetch_var_names):
|
|
|
|
|
global_block.append_op(
|
|
|
|
|
type='fetch',
|
|
|
|
|
inputs={'X': [var]},
|
|
|
|
|
inputs={'X': [name]},
|
|
|
|
|
outputs={'Out': [fetch_var]},
|
|
|
|
|
attrs={'col': i})
|
|
|
|
|
|
|
|
|
|