|  |  |  | @ -241,6 +241,7 @@ def run_benchmark(model, args): | 
			
		
	
		
			
				
					|  |  |  |  |     exe = fluid.Executor(place) | 
			
		
	
		
			
				
					|  |  |  |  |     exe.run(fluid.default_startup_program()) | 
			
		
	
		
			
				
					|  |  |  |  |     accuracy = fluid.average.WeightedAverage() | 
			
		
	
		
			
				
					|  |  |  |  |     train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name) | 
			
		
	
		
			
				
					|  |  |  |  |     if args.use_fake_data: | 
			
		
	
		
			
				
					|  |  |  |  |         data = train_reader().next() | 
			
		
	
		
			
				
					|  |  |  |  |         image = np.array(map(lambda x: x[0].reshape(dshape), data)).astype( | 
			
		
	
	
		
			
				
					|  |  |  | @ -264,14 +265,15 @@ def run_benchmark(model, args): | 
			
		
	
		
			
				
					|  |  |  |  |                                      data)).astype('float32') | 
			
		
	
		
			
				
					|  |  |  |  |                 label = np.array(map(lambda x: x[1], data)).astype('int64') | 
			
		
	
		
			
				
					|  |  |  |  |                 label = label.reshape([-1, 1]) | 
			
		
	
		
			
				
					|  |  |  |  |             loss, acc, weight = exe.run( | 
			
		
	
		
			
				
					|  |  |  |  |                 fluid.default_main_program(), | 
			
		
	
		
			
				
					|  |  |  |  |             loss, acc, weight = train_exe.run( | 
			
		
	
		
			
				
					|  |  |  |  |                 feed={'data': image, | 
			
		
	
		
			
				
					|  |  |  |  |                       'label': label}, | 
			
		
	
		
			
				
					|  |  |  |  |                 fetch_list=[avg_cost, batch_acc, batch_size_tensor]) | 
			
		
	
		
			
				
					|  |  |  |  |                 fetch_list=[avg_cost.name, batch_acc.name, batch_size_tensor.name]) | 
			
		
	
		
			
				
					|  |  |  |  |             iters += 1 | 
			
		
	
		
			
				
					|  |  |  |  |             num_samples += len(label) | 
			
		
	
		
			
				
					|  |  |  |  |             accuracy.add(value=acc, weight=weight) | 
			
		
	
		
			
				
					|  |  |  |  |             accuracy.add(value=np.array(np.mean(acc)), weight=np.mean(weight)) | 
			
		
	
		
			
				
					|  |  |  |  |             loss = np.mean(np.array(loss)) | 
			
		
	
		
			
				
					|  |  |  |  |             acc = np.mean(np.array(acc)) | 
			
		
	
		
			
				
					|  |  |  |  |             train_losses.append(loss) | 
			
		
	
		
			
				
					|  |  |  |  |             train_accs.append(acc) | 
			
		
	
		
			
				
					|  |  |  |  |             print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" % | 
			
		
	
	
		
			
				
					|  |  |  | 
 |