Added fc + activation fuse pass (currently only gelu, sigmoid and tanh are supported) (#29772)

revert-31562-mean
jakpiase 5 years ago committed by GitHub
parent 0e0bb1b97d
commit edc06c6a1b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -105,6 +105,7 @@ if(WITH_MKLDNN)
pass_library(cpu_bfloat16_placement_pass inference DIR mkldnn)
pass_library(cpu_bfloat16_pass inference DIR mkldnn)
pass_library(fc_mkldnn_pass inference DIR mkldnn)
pass_library(fc_act_mkldnn_fuse_pass inference DIR mkldnn)
pass_library(cpu_quantize_placement_pass base DIR mkldnn)
pass_library(cpu_quantize_pass inference DIR mkldnn)
pass_library(cpu_quantize_squash_pass inference DIR mkldnn)
@ -155,6 +156,7 @@ if (WITH_MKLDNN)
cc_test(test_conv_activation_mkldnn_fuse_pass SRCS mkldnn/conv_activation_mkldnn_fuse_pass_tester.cc DEPS conv_activation_mkldnn_fuse_pass)
cc_test(test_conv_concat_relu_mkldnn_fuse_pass SRCS mkldnn/conv_concat_relu_mkldnn_fuse_pass_tester.cc DEPS conv_concat_relu_mkldnn_fuse_pass)
cc_test(test_conv_elementwise_add_mkldnn_fuse_pass SRCS mkldnn/conv_elementwise_add_mkldnn_fuse_pass_tester.cc DEPS conv_elementwise_add_mkldnn_fuse_pass)
cc_test(test_fc_act_mkldnn_fuse_pass SRCS mkldnn/fc_act_mkldnn_fuse_pass_tester.cc DEPS fc_act_mkldnn_fuse_pass)
cc_test(test_batch_norm_act_fuse_pass SRCS mkldnn/batch_norm_act_fuse_pass_tester.cc DEPS batch_norm_act_fuse_pass)
set(TEST_CONV_BN_PASS_DEPS conv_bn_fuse_pass graph_to_program_pass conv_op conv_transpose_op math_function im2col vol2col batch_norm_op gelu_op activation_op elementwise_add_op concat_and_split naive_executor device_context)
if (WITH_GPU)

@ -1017,6 +1017,23 @@ PDNode *patterns::FCMKLDNN::operator()(paddle::framework::ir::PDNode *x,
return fc_out_var;
}
PDNode *patterns::FCActOneDNN::operator()(const std::string &act_type) {
auto *fc = pattern->NewNode(fc_repr())->assert_is_op("fc");
auto *fc_out = pattern->NewNode(fc_out_repr())
->assert_is_op_output("fc", "Out")
->assert_is_op_input(act_type);
auto *act =
pattern->NewNode(act_repr())->assert_is_op(act_type)->AsIntermediate();
auto *act_out = pattern->NewNode(act_out_repr())
->assert_is_op_output(act_type, "Out")
->AsOutput();
fc->LinksTo({fc_out});
act->LinksFrom({fc_out}).LinksTo({act_out});
return act_out;
}
PDNode *patterns::Embedding::operator()(PDNode *x) {
x->assert_is_op_input("lookup_table", "Ids");
auto *lookup_table_op =

@ -552,6 +552,27 @@ struct FCMKLDNN : public PatternBase {
PATTERN_DECL_NODE(output);
};
//
// \brief Pattern looking for fc and a directly following activation
// operator.
//
// \note Currently only gelu and tanh are supported as an activation
// function.
// Formula: act(fc(x))
// Op: fc + act
struct FCActOneDNN : public PatternBase {
FCActOneDNN(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "fc_act_onednn") {}
PDNode* operator()(const std::string& act_type);
// declare operator node's name
PATTERN_DECL_NODE(fc);
PATTERN_DECL_NODE(act);
PATTERN_DECL_NODE(fc_out);
PATTERN_DECL_NODE(act_out);
};
// Embedding
struct Embedding : public PatternBase {
Embedding(PDPattern* pattern, const std::string& name_scope)

@ -0,0 +1,100 @@
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/mkldnn/fc_act_mkldnn_fuse_pass.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/pretty_log.h"
namespace paddle {
namespace framework {
namespace ir {
using string::PrettyLogDetail;
void FuseFCActOneDNNPass::ApplyImpl(Graph *graph) const {
std::vector<std::string> act_types = {"gelu", "tanh", "sigmoid"};
for (std::string act_type : act_types) FuseFCAct(graph, act_type);
}
void FuseFCActOneDNNPass::FuseFCAct(Graph *graph,
const std::string &act_type) const {
PADDLE_ENFORCE_NOT_NULL(
graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
FusePassBase::Init("fc_act", graph);
GraphPatternDetector gpd;
patterns::FCActOneDNN fc_act_pattern(gpd.mutable_pattern(), "fc_act");
fc_act_pattern(act_type);
int found_fc_act_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t &subgraph,
Graph *g) {
VLOG(4) << "Fuse fc with activation op.";
// FC output
GET_IR_NODE_FROM_SUBGRAPH(fc_out, fc_out, fc_act_pattern);
// ACT output
GET_IR_NODE_FROM_SUBGRAPH(act_out, act_out, fc_act_pattern);
// ops
GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_act_pattern);
GET_IR_NODE_FROM_SUBGRAPH(act, act, fc_act_pattern);
auto *fc_op = fc->Op();
auto *act_op = act->Op();
if (fc_op->HasAttr("use_mkldnn")) {
PADDLE_ENFORCE(
BOOST_GET_CONST(bool, fc_op->GetAttr("use_mkldnn")),
platform::errors::PreconditionNotMet(
"The FC+Act fusion may happen only when oneDNN library "
"is used."));
}
if (act_type == "gelu" && act_op->HasAttr("approximate")) {
bool approximate = BOOST_GET_CONST(bool, act_op->GetAttr("approximate"));
std::string type = approximate ? "_tanh" : "_erf";
fc_op->SetAttr("activation_type", act_type + type);
} else
fc_op->SetAttr("activation_type", act_type);
fc_op->SetAttr("use_mkldnn", true);
fc_op->SetOutput("Out", {act_out->Name()});
IR_OP_VAR_LINK(fc, act_out);
GraphSafeRemoveNodes(g, {act, fc_out});
found_fc_act_count++;
};
gpd(graph, handler);
AddStatis(found_fc_act_count);
PrettyLogDetail("--- fused %d fc with %s activation", found_fc_act_count,
act_type);
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(fc_act_mkldnn_fuse_pass,
paddle::framework::ir::FuseFCActOneDNNPass);
REGISTER_PASS_CAPABILITY(fc_act_mkldnn_fuse_pass)
.AddCombination(
paddle::framework::compatible::OpVersionComparatorCombination()
.LE("fc", 0)
.LE("gelu", 0)
.LE("sigmoid", 0)
.LE("tanh", 0));

@ -0,0 +1,45 @@
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace paddle {
namespace framework {
namespace ir {
/*
* \brief Fuse the FC and activation operators into single OneDNN's
* FC with post-op.
*
* \note Currently only GeLU, sigmoid and tanh are supported as an activation
* function.
*/
class FuseFCActOneDNNPass : public FusePassBase {
public:
virtual ~FuseFCActOneDNNPass() {}
protected:
void ApplyImpl(ir::Graph *graph) const override;
void FuseFCAct(ir::Graph *graph, const std::string &act_types) const;
};
} // namespace ir
} // namespace framework
} // namespace paddlea

@ -206,7 +206,8 @@ void CpuPassStrategy::EnableMKLDNN() {
"reshape_transpose_matmul_mkldnn_fuse_pass", //
"matmul_transpose_reshape_fuse_pass", //
// Disabled due to topology-dependent speed-up
// "fc_mkldnn_pass",
//"fc_mkldnn_pass",
//"fc_act_mkldnn_fuse_pass",
"batch_norm_act_fuse_pass",
"mkldnn_inplace_pass", // This pass should be activated after
// fuses

@ -206,6 +206,7 @@ void profile(bool use_mkldnn = false) {
"relu", "fc"};
cfg.SetMKLDNNOp(op_list);
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
std::vector<std::vector<PaddleTensor>> outputs;
@ -262,6 +263,7 @@ void compare(bool use_mkldnn = false) {
"relu"};
cfg.SetMKLDNNOp(op_list);
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
std::vector<std::vector<PaddleTensor>> input_slots_all;

@ -50,8 +50,10 @@ void profile(bool use_mkldnn = false) {
if (use_mkldnn) {
cfg.EnableMKLDNN();
if (!FLAGS_disable_mkldnn_fc)
if (!FLAGS_disable_mkldnn_fc) {
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
}
std::vector<std::vector<PaddleTensor>> outputs;
@ -83,8 +85,10 @@ void compare(bool use_mkldnn = false) {
SetConfig(&cfg);
if (use_mkldnn) {
cfg.EnableMKLDNN();
if (!FLAGS_disable_mkldnn_fc)
if (!FLAGS_disable_mkldnn_fc) {
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
}
std::vector<std::vector<PaddleTensor>> input_slots_all;

@ -163,6 +163,7 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
if (use_mkldnn) {
cfg->EnableMKLDNN();
cfg->pass_builder()->AppendPass("fc_mkldnn_pass");
cfg->pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
// Enable seqpool_concat_fuse_pass, disabled by default since it takes much
// time

@ -25,6 +25,7 @@ void compare(bool use_mkldnn = false) {
if (use_mkldnn) {
cfg.EnableMKLDNN();
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
std::vector<std::vector<PaddleTensor>> input_slots_all;

@ -26,6 +26,7 @@ void profile(bool use_mkldnn = false) {
if (use_mkldnn) {
cfg.EnableMKLDNN();
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
std::vector<std::vector<PaddleTensor>> input_slots_all;

@ -86,6 +86,7 @@ void profile(bool use_mkldnn = false) {
if (use_mkldnn) {
cfg.EnableMKLDNN();
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
// cfg.pass_builder()->TurnOnDebug();
std::vector<std::vector<PaddleTensor>> outputs;
@ -136,6 +137,7 @@ void compare(bool use_mkldnn = false) {
if (use_mkldnn) {
cfg.EnableMKLDNN();
cfg.pass_builder()->AppendPass("fc_mkldnn_pass");
cfg.pass_builder()->AppendPass("fc_act_mkldnn_fuse_pass");
}
std::vector<std::vector<PaddleTensor>> input_slots_all;

@ -459,6 +459,36 @@ class FCPrimitiveFactory {
constexpr float placeholder = 1.0f; // beta
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
negative_slope, placeholder);
} else if (ctx.Attr<std::string>("activation_type") == "gelu") {
constexpr float scale = 1.0f;
constexpr float alpha = 0.0f;
constexpr float beta = 0.0f;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_gelu,
alpha, beta);
} else if (ctx.Attr<std::string>("activation_type") == "gelu_tanh") {
constexpr float scale = 1.0f;
constexpr float alpha = 0.0f;
constexpr float beta = 0.0f;
post_operations.append_eltwise(
scale, mkldnn::algorithm::eltwise_gelu_tanh, alpha, beta);
} else if (ctx.Attr<std::string>("activation_type") == "gelu_erf") {
constexpr float scale = 1.0f;
constexpr float alpha = 0.0f;
constexpr float beta = 0.0f;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_gelu_erf,
alpha, beta);
} else if (ctx.Attr<std::string>("activation_type") == "tanh") {
constexpr float scale = 1.0f;
constexpr float alpha = 0.0f;
constexpr float beta = 0.0f;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_tanh,
alpha, beta);
} else if (ctx.Attr<std::string>("activation_type") == "sigmoid") {
constexpr float scale = 1.0f;
constexpr float alpha = 0.0f;
constexpr float beta = 0.0f;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_logistic,
alpha, beta);
}
attributes.set_post_ops(post_operations);

@ -0,0 +1,116 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test for fusion of fc and activation."""
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
from inference_pass_test import InferencePassTest
from paddle import enable_static
from paddle.fluid.core import PassVersionChecker
enable_static()
class FCGeluTanhOneDnnFusePassTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 128, 768], dtype="float32")
fc_out = fluid.layers.fc(input=data, size=3072, num_flatten_dims=2)
gelu_out = fluid.layers.gelu(fc_out, approximate=False)
self.feeds = {"data": np.random.random((1, 128, 768)).astype("float32")}
self.fetch_list = [gelu_out]
self.enable_mkldnn = True
def set_params(self):
self.pass_name = "fc_act_mkldnn_fuse_pass"
def test_check_output(self):
self.check_output()
class FCGeluErfOneDnnFusePassTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 128, 768], dtype="float32")
fc_out = fluid.layers.fc(input=data, size=3072, num_flatten_dims=2)
gelu_out = fluid.layers.gelu(fc_out, approximate=True)
self.feeds = {"data": np.random.random((1, 128, 768)).astype("float32")}
self.fetch_list = [gelu_out]
self.enable_mkldnn = True
def set_params(self):
self.pass_name = "fc_act_mkldnn_fuse_pass"
def test_check_output(self):
self.check_output()
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))
class FCTanhOneDnnFusePassTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 128, 768], dtype="float32")
fc_out = fluid.layers.fc(input=data, size=3072, num_flatten_dims=2)
tanh_out = fluid.layers.tanh(fc_out)
self.feeds = {"data": np.random.random((1, 128, 768)).astype("float32")}
self.fetch_list = [tanh_out]
self.enable_mkldnn = True
def set_params(self):
self.pass_name = "fc_act_mkldnn_fuse_pass"
def test_check_output(self):
self.check_output()
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))
class FCSigmoidOneDnnFusePassTest(InferencePassTest):
def setUp(self):
self.set_params()
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 128, 768], dtype="float32")
fc_out = fluid.layers.fc(input=data, size=3072, num_flatten_dims=2)
sigmoid_out = fluid.layers.sigmoid(fc_out)
self.feeds = {"data": np.random.random((1, 128, 768)).astype("float32")}
self.fetch_list = [sigmoid_out]
self.enable_mkldnn = True
def set_params(self):
self.pass_name = "fc_act_mkldnn_fuse_pass"
def test_check_output(self):
self.check_output()
self.assertTrue(PassVersionChecker.IsCompatible(self.pass_name))
if __name__ == "__main__":
unittest.main()
Loading…
Cancel
Save