parent
a7b0d5bd26
commit
edfd741e3a
@ -0,0 +1,62 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import core
|
||||
import multiprocessing
|
||||
import framework
|
||||
import executor
|
||||
|
||||
__all__ = ['ParallelExecutor']
|
||||
|
||||
|
||||
class ParallelExecutor(object):
|
||||
def __init__(self, loss_name, use_cuda, num_threads=None):
|
||||
places = []
|
||||
if use_cuda:
|
||||
for i in xrange(core.get_cuda_device_count()):
|
||||
p = core.Place()
|
||||
p.set_place(core.CUDAPlace(i))
|
||||
places.append(p)
|
||||
else:
|
||||
for i in xrange(multiprocessing.cpu_count()):
|
||||
p = core.Place()
|
||||
p.set_place(core.CPUPlace())
|
||||
places.append(p)
|
||||
|
||||
if num_threads is None:
|
||||
num_threads = min(len(places) * 2, multiprocessing.cpu_count())
|
||||
|
||||
startup = framework.default_startup_program()
|
||||
main = framework.default_main_program()
|
||||
scope = executor.global_scope()
|
||||
|
||||
self.executor = core.ParallelExecutor(
|
||||
num_threads,
|
||||
True if use_cuda else False, # use_event
|
||||
places,
|
||||
set([
|
||||
p.name for p in main.global_block().iter_parameters()
|
||||
if not p.stop_gradient
|
||||
]),
|
||||
startup.desc,
|
||||
main.desc,
|
||||
loss_name,
|
||||
scope)
|
||||
self.scope = scope
|
||||
|
||||
def run(self, fetch_list):
|
||||
fetch_var_name = '@FETCHED_VAR_NAME@'
|
||||
self.executor.run(fetch_list, fetch_var_name)
|
||||
arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
|
||||
return [arr[i] for i in range(len(arr))]
|
Loading…
Reference in new issue