[WIP] update optimizer for 2.0 (#26288)

refine Optimizer/Adam/Admax/RMSProp && add Admw

* buf fix

* update comment

* unify arguments place; notest

* fix ut, test=develop

* bug fix

* fix conflicts, test=develop

* add examples code

* bug fix

* fix comments

* fix sample code

* add sample code for Optimizer

* add adamax ut, test=develop

* fix rmsprop ut, test=develop

* add ut for optimizer.py and adamw.py

* remove TestAdamOptimizerBetaVariable

* update api && add ut

* update doc && fix ut

* add ut

Co-authored-by: mapingshuo <mps2012@yeah.net>
test_feature_precision_test_c
MRXLT 5 years ago committed by GitHub
parent e2b82e0439
commit eeda90d674
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -40,6 +40,7 @@ from paddle.fluid.layers import tensor
from functools import reduce
from .wrapped_decorator import signature_safe_contextmanager
from .. import compat as cpt
import paddle
__all__ = [
'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
@ -3690,7 +3691,8 @@ class PipelineOptimizer(object):
def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
if framework.in_dygraph_mode():
raise Exception("In dygraph, don't support PipelineOptimizer.")
if not isinstance(optimizer, Optimizer):
if not isinstance(optimizer, Optimizer) and not isinstance(
optimizer, paddle.optimizer.Optimizer):
raise ValueError("The 'optimizer' parameter for "
"PipelineOptimizer must be an instance of "
"Optimizer, but the given type is {}.".format(

@ -20,6 +20,7 @@ from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
class TestAdamOp1(OpTest):
@ -401,46 +402,111 @@ class TestAdamOpBetaVariable(OpTest):
self.check_output()
class TestAdamOptimizerBetaVariable(unittest.TestCase):
def test_adam_optimizer(self):
def test_with_place(place, shape):
exe = fluid.Executor(place)
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
data = fluid.data(name="data", shape=shape)
conv = fluid.layers.conv2d(data, 8, 3)
loss = fluid.layers.reduce_mean(conv)
beta1 = fluid.layers.create_global_var(
shape=[1],
value=0.85,
dtype='float32',
persistable=True)
beta2 = fluid.layers.create_global_var(
shape=[1],
value=0.95,
dtype='float32',
persistable=True)
opt = fluid.optimizer.Adam(
learning_rate=1e-5, beta1=beta1, beta2=beta2)
opt.minimize(loss)
exe.run(startup)
data_np = np.random.random(shape).astype('float32')
rets = exe.run(train_prog,
feed={"data": data_np},
fetch_list=[loss])
assert rets[0] is not None
class TestAdamOpV2(unittest.TestCase):
def test_adam_op(self):
place = fluid.CPUPlace()
shape = [2, 3, 8, 8]
places = [fluid.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(fluid.CUDAPlace(0))
for place in places:
test_with_place(place, shape)
exe = fluid.Executor(place)
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
data = fluid.data(name="data", shape=shape)
conv = fluid.layers.conv2d(data, 8, 3)
loss = fluid.layers.reduce_mean(conv)
beta1 = fluid.layers.create_global_var(
shape=[1], value=0.85, dtype='float32', persistable=True)
beta2 = fluid.layers.create_global_var(
shape=[1], value=0.95, dtype='float32', persistable=True)
betas = [beta1, beta2]
opt = paddle.optimizer.Adam(
learning_rate=1e-5,
beta1=beta1,
beta2=beta2,
weight_decay=0.01,
epsilon=1e-8)
opt.minimize(loss)
exe.run(startup)
data_np = np.random.random(shape).astype('float32')
rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
assert rets[0] is not None
def test_adam_op_dygraph(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value)
linear = fluid.Linear(13, 5, dtype="float32")
adam = paddle.optimizer.Adam(
learning_rate=0.01, parameters=linear.parameters())
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
def test_adam_op_with_state_dict(self):
import paddle
paddle.disable_static()
emb = paddle.nn.Embedding([10, 10])
adam = paddle.optimizer.Adam(0.001, parameters=emb.parameters())
state_dict = adam.state_dict()
adam.set_state_dict(state_dict)
#learning_rate is Decay
learning_rate = fluid.dygraph.CosineDecay(0.1, 10000, 120)
adam = paddle.optimizer.Adam(
learning_rate=learning_rate,
weight_decay=fluid.regularizer.L2Decay(0.001),
parameters=emb.parameters())
lr = adam.get_lr()
state_dict = adam.state_dict()
adam.set_state_dict(state_dict)
#leanrning_rate is Tensor
with self.assertRaises(TypeError):
learning_rate = np.array([0.01]).astype("float32")
learning_rate = paddle.to_tensor(learning_rate)
adam = paddle.optimizer.Adam(
learning_rate=learning_rate, parameters=emb.parameters())
params = adam.get_opti_var_name_list()
assert (params is not None)
def test_adam_with_grad_clip(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value)
linear = fluid.Linear(13, 5, dtype="float32")
clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0)
adam = paddle.optimizer.Adam(
0.1, parameters=linear.parameters(), grad_clip=clip)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
def test_adam_op_with_set_lr(self):
paddle.disable_static()
linear = paddle.nn.Linear(10, 10)
adam = paddle.optimizer.Adam(0.1, parameters=linear.parameters())
lr = 0.01
adam.set_lr(lr)
cur_lr = adam.get_lr()
assert (lr == cur_lr)
lr_var = paddle.create_global_var(shape=[1], value=lr, dtype='float32')
adam.set_lr(lr_var)
cur_lr = adam.get_lr()
assert (np.float32(lr) == cur_lr)
with self.assertRaises(TypeError):
lr = int(1)
adam.set_lr(lr)
if __name__ == "__main__":

@ -0,0 +1,67 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
class TestAdamaxAPI(unittest.TestCase):
def test_adamax_api_dygraph(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_variable(value)
linear = paddle.nn.Linear(13, 5, dtype="float32")
adam = paddle.optimizer.Adamax(
learning_rate=0.01,
parameters=linear.parameters(),
weight_decay=0.01)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
def test_adamax_api(self):
place = fluid.CPUPlace()
shape = [2, 3, 8, 8]
exe = fluid.Executor(place)
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
data = fluid.data(name="data", shape=shape)
conv = fluid.layers.conv2d(data, 8, 3)
loss = paddle.mean(conv)
beta1 = 0.85
beta2 = 0.95
opt = paddle.optimizer.Adamax(
learning_rate=1e-5,
beta1=beta1,
beta2=beta2,
weight_decay=0.01,
epsilon=1e-8)
opt.minimize(loss)
exe.run(startup)
data_np = np.random.random(shape).astype('float32')
rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
assert rets[0] is not None
if __name__ == "__main__":
unittest.main()

@ -0,0 +1,81 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
class TestAdamWOp(unittest.TestCase):
def test_adamw_op_dygraph(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_variable(value)
linear = paddle.nn.Linear(13, 5, dtype="float32")
adam = paddle.optimizer.AdamW(
learning_rate=0.01,
parameters=linear.parameters(),
apply_decay_param_fun=lambda name: True,
weight_decay=0.01)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
def test_adamw_op_coverage(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_variable(value)
linear = paddle.nn.Linear(13, 5, dtype="float32")
adam = paddle.optimizer.AdamW(
learning_rate=0.0,
parameters=linear.parameters(),
apply_decay_param_fun=lambda name: True,
weight_decay=0.01)
assert (adam.__str__() is not None)
def test_adamw_op(self):
place = fluid.CPUPlace()
shape = [2, 3, 8, 8]
exe = fluid.Executor(place)
train_prog = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
data = fluid.data(name="data", shape=shape)
conv = fluid.layers.conv2d(data, 8, 3)
loss = paddle.mean(conv)
beta1 = fluid.layers.create_global_var(
shape=[1], value=0.85, dtype='float32', persistable=True)
beta2 = fluid.layers.create_global_var(
shape=[1], value=0.95, dtype='float32', persistable=True)
betas = [beta1, beta2]
opt = paddle.optimizer.AdamW(
learning_rate=1e-5,
beta1=beta1,
beta2=beta2,
weight_decay=0.01,
epsilon=1e-8)
opt.minimize(loss)
exe.run(startup)
data_np = np.random.random(shape).astype('float32')
rets = exe.run(train_prog, feed={"data": data_np}, fetch_list=[loss])
assert rets[0] is not None
if __name__ == "__main__":
unittest.main()

@ -55,7 +55,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -100,7 +100,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -55,7 +55,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
strategy.a_sync_configs = {"k_steps": 100}
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -47,7 +47,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = False
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -165,7 +165,7 @@ class TestPSPassWithBow(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(loss)

@ -51,7 +51,7 @@ class TestFleetAMPOptimizer(unittest.TestCase):
"custom_black_list": ['tanh'],
}
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -60,7 +60,8 @@ class TestFleetDGCOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer = paddle.fluid.optimizer.Momentum(
learning_rate=0.01, momentum=0.9)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -72,7 +73,7 @@ class TestFleetDGCOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Adam(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -87,7 +88,8 @@ class TestFleetDGCOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer = paddle.fluid.optimizer.Momentum(
learning_rate=0.01, momentum=0.9)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -44,7 +44,7 @@ class TestFleetGradientMergeMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.gradient_merge = True
strategy.gradient_merge_configs = {"k_steps": 2, "avg": True}
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -58,7 +58,7 @@ class TestFleetGraphExecutionMetaOptimizer(unittest.TestCase):
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(
optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -118,10 +118,129 @@ class TestFleetGraphExecutionMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.nccl_comm_num = 2
strategy.sync_nccl_allreduce = True
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(
optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace())
exe.run(paddle.fluid.default_startup_program())
import numpy as np
def gen_data():
return {
"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(
2, size=(128, 1)).astype('int64')
}
for i in range(10):
cost_val = exe.run(feed=gen_data(), fetch_list=[avg_cost.name])
print("cost of step[{}] = {}".format(i, cost_val))
proc_a = launch_func(node_func, node_a)
proc_a.start()
proc_b = launch_func(node_func, node_b)
proc_b.start()
proc_a.join()
proc_b.join()
def test_graph_execution_optimizer_not_apply_v2(self):
node_a = {
"PADDLE_TRAINER_ID": "0",
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36003",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36003,127.0.0.1:36004",
"http_proxy": "",
"https_proxy": ""
}
node_b = {
"PADDLE_TRAINER_ID": "1",
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36004",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36003,127.0.0.1:36004",
"http_proxy": "",
"https_proxy": ""
}
def node_func():
import paddle.distributed.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(
name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2],
size=2,
act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(
optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
proc_a = launch_func(node_func, node_a)
proc_a.start()
proc_b = launch_func(node_func, node_b)
proc_b.start()
proc_a.join()
proc_b.join()
def test_graph_execution_optimizer(self):
node_a = {
"PADDLE_TRAINER_ID": "0",
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36001",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002",
"http_proxy": "",
"https_proxy": ""
}
node_b = {
"PADDLE_TRAINER_ID": "1",
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36002",
"PADDLE_TRAINERS_NUM": "2",
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002",
"http_proxy": "",
"https_proxy": ""
}
def node_func():
import paddle.distributed.fleet as fleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
input_x = paddle.fluid.layers.data(
name="x", shape=[32], dtype='float32')
input_y = paddle.fluid.layers.data(
name="y", shape=[1], dtype='int64')
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
prediction = paddle.fluid.layers.fc(input=[fc_2],
size=2,
act='softmax')
cost = paddle.fluid.layers.cross_entropy(
input=prediction, label=input_y)
avg_cost = paddle.fluid.layers.mean(x=cost)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.nccl_comm_num = 2
strategy.sync_nccl_allreduce = True
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(
optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace())
exe.run(paddle.fluid.default_startup_program())

@ -60,7 +60,7 @@ class TestFleetGraphExecutionMetaOptimizer(unittest.TestCase):
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.nccl_comm_num = 2
strategy.sync_nccl_allreduce = True
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(
optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -62,7 +62,7 @@ class TestFleetLambMetaOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Adam(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -75,7 +75,8 @@ class TestFleetLambMetaOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Momentum(learning_rate=0.1, momentum=0.9)
optimizer = paddle.fluid.optimizer.Momentum(
learning_rate=0.1, momentum=0.9)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -88,7 +89,7 @@ class TestFleetLambMetaOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Adam(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
strategy.lamb_configs = {
'lamb_weight_decay': 0.01,
'exclude_from_weight_decay': ['.b_0'],

@ -62,7 +62,8 @@ class TestFleetLarsMetaOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer = paddle.fluid.optimizer.Momentum(
learning_rate=0.01, momentum=0.9)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)
@ -75,7 +76,7 @@ class TestFleetLarsMetaOptimizer(unittest.TestCase):
startup_prog = fluid.Program()
train_prog = fluid.Program()
avg_cost, strategy = self.net(train_prog, startup_prog)
optimizer = paddle.optimizer.Adam(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -46,7 +46,7 @@ class TestFleetLocalSGDMetaOptimizer(unittest.TestCase):
config['k_steps'] = 1
strategy.localsgd_configs = config
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -53,7 +53,7 @@ class TestFleetMetaOptimizer(unittest.TestCase):
strategy.pipeline = True
strategy.pipeline_configs = {'micro_batch': 2}
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -45,7 +45,7 @@ class TestFleetRecomputeMetaOptimizer(unittest.TestCase):
strategy.recompute = True
strategy.recompute_configs = {"checkpoints": ["fc_1.tmp_0"]}
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.01)
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
optimizer.minimize(avg_cost)

@ -96,8 +96,8 @@ class TestRetainGraph(unittest.TestCase):
g = Generator()
d = Discriminator()
optim_g = paddle.optimizer.Adam(parameter_list=g.parameters())
optim_d = paddle.optimizer.Adam(parameter_list=d.parameters())
optim_g = paddle.optimizer.Adam(parameters=g.parameters())
optim_d = paddle.optimizer.Adam(parameters=d.parameters())
gan_criterion = paddle.nn.MSELoss()
l1_criterion = paddle.nn.L1Loss()

@ -20,6 +20,7 @@ import numpy as np
import paddle.fluid.core as core
from paddle.fluid.op import Operator
import paddle.fluid as fluid
import paddle
def create_selected_rows_and_tensor(scope, place, height, row_num,
@ -222,5 +223,59 @@ class TestRmspropOp(TestBase):
size=size)
class TestRMSPropV2(unittest.TestCase):
def test_rmsprop_dygraph(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear = paddle.nn.Linear(13, 5, dtype="float32")
# This can be any optimizer supported by dygraph.
adam = paddle.optimizer.RMSProp(
learning_rate=0.01,
parameters=linear.parameters(),
weight_decay=0.01)
out = linear(a)
out.backward()
adam.step()
adam.clear_gradients()
def test_rmsprop(self):
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
rms_optimizer = paddle.optimizer.RMSProp(learning_rate=0.1)
rms_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
def test_raise_error(self):
self.assertRaises(ValueError, paddle.optimizer.RMSProp, None)
self.assertRaises(
ValueError, paddle.optimizer.RMSProp, learning_rate=0.1, rho=None)
self.assertRaises(
ValueError,
paddle.optimizer.RMSProp,
learning_rate=0.1,
epsilon=None)
self.assertRaises(
ValueError,
paddle.optimizer.RMSProp,
learning_rate=0.1,
momentum=None)
if __name__ == "__main__":
unittest.main()

@ -14,21 +14,25 @@
__all__ = [
'Adadelta', 'AdadeltaOptimizer', 'Adagrad', 'AdagradOptimizer', 'Adam',
'Adamax', 'AdamaxOptimizer', 'AdamOptimizer', 'DecayedAdagrad',
'DecayedAdagradOptimizer', 'DGCMomentumOptimizer', 'Dpsgd',
'DpsgdOptimizer', 'ExponentialMovingAverage', 'Ftrl', 'FtrlOptimizer',
'LambOptimizer', 'LarsMomentum', 'LarsMomentumOptimizer',
'LookaheadOptimizer', 'ModelAverage', 'Momentum', 'MomentumOptimizer',
'PipelineOptimizer', 'RecomputeOptimizer', 'RMSPropOptimizer', 'SGD',
'SGDOptimizer'
'Adamax', 'AdamW', 'DecayedAdagrad', 'DecayedAdagradOptimizer',
'DGCMomentumOptimizer', 'Dpsgd', 'DpsgdOptimizer',
'ExponentialMovingAverage', 'Ftrl', 'FtrlOptimizer', 'LambOptimizer',
'LarsMomentum', 'LarsMomentumOptimizer', 'LookaheadOptimizer',
'ModelAverage', 'Momentum', 'MomentumOptimizer', 'PipelineOptimizer',
'RecomputeOptimizer', 'RMSProp', 'SGD', 'SGDOptimizer', 'Optimizer'
]
from ..fluid.optimizer import SGD, Momentum, Adagrad, Adam, Adamax, Dpsgd, DecayedAdagrad, \
Ftrl, SGDOptimizer, MomentumOptimizer, AdagradOptimizer, \
AdamOptimizer, AdamaxOptimizer, DpsgdOptimizer, \
DecayedAdagradOptimizer, RMSPropOptimizer, FtrlOptimizer, Adadelta, \
AdadeltaOptimizer, ModelAverage, LarsMomentum, \
LarsMomentumOptimizer, DGCMomentumOptimizer, LambOptimizer, \
from ..fluid.optimizer import SGD, Momentum, Adagrad, Dpsgd, DecayedAdagrad, \
Ftrl, Adadelta, \
SGDOptimizer, MomentumOptimizer, AdagradOptimizer,DpsgdOptimizer,\
DecayedAdagradOptimizer,FtrlOptimizer,AdadeltaOptimizer, \
ModelAverage, LarsMomentum, DGCMomentumOptimizer, LambOptimizer,\
ExponentialMovingAverage, PipelineOptimizer, LookaheadOptimizer, \
RecomputeOptimizer
RecomputeOptimizer, LarsMomentumOptimizer
from .optimizer import Optimizer
from .adam import Adam
from .adamw import AdamW
from .adamax import Adamax
from .rmsprop import RMSProp

@ -0,0 +1,246 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable
__all__ = ["Adam"]
class Adam(Optimizer):
"""
The Adam optimizer uses an optimization described at the end
of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
it can dynamically adjusts the learning rate of each parameter using
the 1st moment estimates and the 2nd moment estimates of the gradient.
The parameter ``param_out`` update rule with gradient ``grad``:
.. math::
t & = t + 1
moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad
moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad
learning\_rate & = learning\_rate * \\
\\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}
param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Args:
learning_rate (float|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
It can be a float value or a LearningRateDecay. The default value is 0.001.
beta1 (float|Tensor, optional): The exponential decay rate for the 1st moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.9.
beta2 (float|Tensor, optional): The exponential decay rate for the 2nd moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
parameters (list, optional): List of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
The accumulators are updated at every step. Every element of the two moving-average
is updated in both dense mode and sparse mode. If the size of parameter is very large,
then the update may be very slow. The lazy mode only update the element that has
gradient in current mini-batch, so it will be much more faster. But this mode has
different semantics with the original Adam algorithm and may lead to different result.
The default value is False.
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
adam = paddle.optimizer.Adam(learning_rate=0.1,
parameters=linear.parameters())
out.backward()
adam.step()
adam.clear_grad()
.. code-block:: python
# Adam with beta1/beta2 as Tensor and weight_decay as float
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
adam = paddle.optimizer.Adam(learning_rate=0.1,
parameters=linear.parameters(),
beta1=beta1,
beta2=beta2,
weight_decay=0.01)
out.backward()
adam.step()
adam.clear_grad()
"""
_moment1_acc_str = "moment1"
_moment2_acc_str = "moment2"
_beta1_pow_acc_str = "beta1_pow_acc"
_beta2_pow_acc_str = "beta2_pow_acc"
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None,
lazy_mode=False):
assert learning_rate is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
super(Adam, self).__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
name=name)
self.type = "adam"
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
self._lazy_mode = lazy_mode
def _create_accumulators(self, block, parameters):
assert isinstance(block, framework.Block)
# Create accumulator tensors for first and second moments
for p in parameters:
self._add_accumulator(self._moment1_acc_str, p)
self._add_accumulator(self._moment2_acc_str, p)
self._add_accumulator(
name=self._beta1_pow_acc_str,
param=p,
fill_value=0.9 if isinstance(self._beta1, Variable) \
else self._beta1,
shape=[1],
type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
self._add_accumulator(
name=self._beta2_pow_acc_str,
param=p,
fill_value=0.999 if isinstance(self._beta2, Variable) \
else self._beta2,
shape=[1],
type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment1 = self._get_accumulator(self._moment1_acc_str,
param_and_grad[0])
moment2 = self._get_accumulator(self._moment2_acc_str,
param_and_grad[0])
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param_and_grad[0])
beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
param_and_grad[0])
lr = self._create_param_lr(param_and_grad)
# create the adam optimize op
if framework.in_dygraph_mode():
_beta1 = self._beta1 if not isinstance(
self._beta1, Variable) else self._beta1.numpy().item(0)
_beta2 = self._beta2 if not isinstance(
self._beta2, Variable) else self._beta2.numpy().item(0)
_, _, _, _, _ = core.ops.adam(
param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
1000, 'beta1', _beta1, 'beta2', _beta2)
return None
inputs = {
"Param": [param_and_grad[0]],
"Grad": [param_and_grad[1]],
"LearningRate": [lr],
"Moment1": [moment1],
"Moment2": [moment2],
"Beta1Pow": [beta1_pow_acc],
"Beta2Pow": [beta2_pow_acc]
}
outputs = {
"ParamOut": [param_and_grad[0]],
"Moment1Out": [moment1],
"Moment2Out": [moment2],
"Beta1PowOut": [beta1_pow_acc],
"Beta2PowOut": [beta2_pow_acc],
}
attrs = {
"epsilon": self._epsilon,
"lazy_mode": self._lazy_mode,
"min_row_size_to_use_multithread": 1000
}
if isinstance(self._beta1, Variable):
inputs['Beta1Tensor'] = self._beta1
else:
attrs['beta1'] = self._beta1
if isinstance(self._beta2, Variable):
inputs['Beta2Tensor'] = self._beta2
else:
attrs['beta2'] = self._beta2
adam_op = block.append_op(
type=self.type,
inputs=inputs,
outputs=outputs,
attrs=attrs,
stop_gradient=True)
return adam_op

@ -0,0 +1,192 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
__all__ = ["Adamax"]
class Adamax(Optimizer):
"""
The Adamax optimizer is implemented based on the Adamax Optimization
in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
which makes the learning rate update algorithm more stable and simple.
The parameter ``param_out`` update rule with gradient ``grad``:
.. math::
t & = t + 1
moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad
inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)
learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}
param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}
Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
The original paper does not have an ``epsilon`` attribute,
it is added here for numerical stability to prevent the division by 0 error.
Args:
learning_rate (float|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
It can be a float value or a LearningRateDecay. The default value is 0.001.
beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
The default value is 0.9.
beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
The default value is 1e-08.
parameters (list, optional): List of ``Tensor`` names to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
It canbe a float value as coeff of L2 regularization or \
:ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
the regularization setting here in optimizer will be ignored for this parameter. \
Otherwise, the regularization setting here in optimizer will take effect. \
Default None, meaning there is no regularization.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
**Notes**:
**Currently, Adamax doesn't support sparse parameter optimization.**
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
inp = paddle.to_tensor(inp)
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
adam = paddle.optimizer.Adamax(learning_rate=0.1,
parameters=linear.parameters(),
beta1=beta1,
beta2=beta2,
weight_decay=0.01)
out.backward()
adam.step()
adam.clear_grad()
"""
_moment_acc_str = "moment"
_inf_norm_acc_str = "inf_norm"
_beta1_pow_acc_str = "beta1_pow_acc"
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
parameters=None,
weight_decay=None,
grad_clip=None,
name=None):
assert learning_rate is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
super(Adamax, self).__init__(
learning_rate=learning_rate,
parameters=parameters,
weight_decay=weight_decay,
grad_clip=grad_clip,
name=name)
self.type = "adamax"
self._beta1 = beta1
self._beta2 = beta2
self._epsilon = epsilon
def _create_accumulators(self, block, parameters):
# Create accumulator tensors for first moment and infinity norm
for p in parameters:
self._add_accumulator(self._moment_acc_str, p)
self._add_accumulator(self._inf_norm_acc_str, p)
self._add_accumulator(
name=self._beta1_pow_acc_str,
param=p,
fill_value=self._beta1,
shape=[1])
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
inf_norm = self._get_accumulator(self._inf_norm_acc_str,
param_and_grad[0])
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param_and_grad[0])
# create the adamax optimize op
adamax_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": self._create_param_lr(param_and_grad),
"Moment": moment,
"InfNorm": inf_norm,
"Beta1Pow": beta1_pow_acc
},
outputs={
"ParamOut": param_and_grad[0],
"MomentOut": moment,
"InfNormOut": inf_norm
},
attrs={
"beta1": self._beta1,
"beta2": self._beta2,
"epsilon": self._epsilon
},
stop_gradient=True)
return adamax_op
def _finish_update(self, block, parameters_and_grads):
"""Update Beta1 Power accumulator
"""
assert isinstance(block, framework.Block)
for param, grad in parameters_and_grads:
if grad is None or param.trainable is False:
continue
with param.block.program._optimized_guard(
[param, grad]), name_scope('adamax'):
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param)
block.append_op(
type="scale",
inputs={"X": beta1_pow_acc},
outputs={"Out": beta1_pow_acc},
attrs={"scale": self._beta1},
stop_gradient=True)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save