refine doc, test=develop

align_pyramid
jerrywgz 6 years ago
parent 21e0d35ce3
commit f0177a1ed1

@ -328,7 +328,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fa7008889611447edd1bac71dd42b558'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fdffe52577f7e74c090b030867fefc11'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', '9808534c12c5e739a10f73ebb0b4eafd'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'e0e95334fce92d16c2d9db6e7caffc47'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51'))

@ -2231,21 +2231,23 @@ def distribute_fpn_proposals(fpn_rois,
refer_scale,
name=None):
"""
Distribute all proposals into different fpn level, with respect to scale
of the proposals, the referring scale and the referring level. Besides, to
restore the order of proposals, we return an array which indicates the
original index of rois in current proposals. To compute fpn level for each
roi, the formula is given as follows:
In Feature Pyramid Networks (FPN) models, it is needed to distribute all
proposals into different FPN level, with respect to scale of the proposals,
the referring scale and the referring level. Besides, to restore the order
of proposals, we return an array which indicates the original index of rois
in current proposals. To compute FPN level for each roi, the formula is
given as follows:
.. math::
roi\_scale = \sqrt{BBoxArea(fpn\_roi)}
level = floor(\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
where BBoxArea is the area of each roi
level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
where BBoxArea is a function to compute the area of each roi.
Args:
fpn_rois(variable): The input fpn_rois, the last dimension is 4.
fpn_rois(variable): The input fpn_rois, the second dimension is 4.
min_level(int): The lowest level of FPN layer where the proposals come
from.
max_level(int): The highest level of FPN layer where the proposals

Loading…
Cancel
Save