|
|
|
@ -93,41 +93,48 @@ class GradientClipByNorm(BaseGradientClipAttr):
|
|
|
|
|
class GradientClipByGlobalNorm(BaseGradientClipAttr):
|
|
|
|
|
global_norm_var = None
|
|
|
|
|
clip_norm_var = None
|
|
|
|
|
ratio_var = None
|
|
|
|
|
scale_var = None
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def init(cls, clip_norm):
|
|
|
|
|
if not (isinstance(clip_norm, int) or isinstance(clip_norm, float)):
|
|
|
|
|
raise TypeError("The 'clip_norm' must be a value of int or float")
|
|
|
|
|
|
|
|
|
|
cls.global_norm_var = layers.fill_constant(
|
|
|
|
|
shape=[1], dtype="float32", value=0.0)
|
|
|
|
|
cls.clip_norm_var = layers.fill_constant(
|
|
|
|
|
shape=[1], dtype="float32", value=clip_norm)
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
if not (isinstance(self.__class__.global_norm_var, Variable) and
|
|
|
|
|
isinstance(self.__class__.clip_norm_var, Variable)):
|
|
|
|
|
@classmethod
|
|
|
|
|
def check_init(cls):
|
|
|
|
|
if not (isinstance(cls.global_norm_var, Variable) and
|
|
|
|
|
isinstance(cls.clip_norm_var, Variable)):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Class 'GradientClipByGlobalNorm' has not been properly initialized. Please call GradientClipByGlobalNorm.init() first."
|
|
|
|
|
)
|
|
|
|
|
"Class 'GradientClipByGlobalNorm' has not been properly initialized. \
|
|
|
|
|
Please call GradientClipByGlobalNorm.init() first.")
|
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def process_context(cls, context, param, grad):
|
|
|
|
|
cls.check_init()
|
|
|
|
|
|
|
|
|
|
def process_context(self, context, param, grad):
|
|
|
|
|
local_norm_var = layers.reduce_sum(
|
|
|
|
|
x=layers.pow(x=grad, factor=2), reduce_all=True)
|
|
|
|
|
layers.sums(
|
|
|
|
|
input=[local_norm_var, self.__class__.global_norm_var],
|
|
|
|
|
out=[self.__class__.global_norm_var])
|
|
|
|
|
input=[local_norm_var, cls.global_norm_var],
|
|
|
|
|
out=[cls.global_norm_var])
|
|
|
|
|
|
|
|
|
|
def create_operators(self, param, grad):
|
|
|
|
|
if self.__class__.ratio_var is None:
|
|
|
|
|
self.__class__.global_norm_var = layers.sqrt(
|
|
|
|
|
x=self.__class__.global_norm_var)
|
|
|
|
|
self.__class__.ratio_var = layers.elementwise_div(
|
|
|
|
|
x=self.__class__.clip_norm_var,
|
|
|
|
|
@classmethod
|
|
|
|
|
def create_operators(cls, param, grad):
|
|
|
|
|
cls.check_init()
|
|
|
|
|
|
|
|
|
|
if cls.scale_var is None:
|
|
|
|
|
cls.global_norm_var = layers.sqrt(x=cls.global_norm_var)
|
|
|
|
|
cls.scale_var = layers.elementwise_div(
|
|
|
|
|
x=cls.clip_norm_var,
|
|
|
|
|
y=layers.elementwise_max(
|
|
|
|
|
x=self.__class__.clip_norm_var,
|
|
|
|
|
y=self.__class__.global_norm_var))
|
|
|
|
|
# 缺乏elementwise_max
|
|
|
|
|
# 没法将ratio_var送给scale_op。
|
|
|
|
|
# new_grad = layers.
|
|
|
|
|
x=cls.clip_norm_var, y=cls.global_norm_var))
|
|
|
|
|
new_grad = layers.elementwise_mul(x=grad, y=cls.scale_var)
|
|
|
|
|
return param, new_grad
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def append_gradient_clip_ops(param_grad):
|
|
|
|
|