Add py_reader combination unittest (#19923)
* add py_reader combination unittest,test=develop * follow huihuang's comments, test=developexpand_as_op_1
parent
b1e83b33b0
commit
f254b477d1
@ -0,0 +1,99 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestPyReaderCombination(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.n1 = 10
|
||||
self.n2 = 20
|
||||
self.batch_size = 2
|
||||
|
||||
def create_reader(self, batch_num):
|
||||
def __impl__():
|
||||
for _ in range(batch_num):
|
||||
image = np.random.uniform(
|
||||
low=-1, high=1, size=[batch_num, 784]).astype('float32')
|
||||
label = np.random.random_integers(
|
||||
low=0, high=9, size=[batch_num, 1]).astype('int64')
|
||||
yield image, label
|
||||
|
||||
return __impl__
|
||||
|
||||
def assertFeedVarEqual(self, reader_list_data, py_reader_dict_data):
|
||||
image1 = reader_list_data[0]
|
||||
label1 = reader_list_data[1]
|
||||
|
||||
image2 = np.array(py_reader_dict_data[0]['image'])
|
||||
label2 = np.array(py_reader_dict_data[0]['label'])
|
||||
self.assertTrue(np.array_equal(image1, image2))
|
||||
self.assertTrue(np.array_equal(label1, label2))
|
||||
|
||||
def main_impl(self, place):
|
||||
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||
image = fluid.layers.data(
|
||||
name='image', dtype='float32', shape=[784])
|
||||
label = fluid.layers.data(name='label', dtype='int64', shape=[1])
|
||||
|
||||
py_reader1 = fluid.io.PyReader(
|
||||
feed_list=[image, label], capacity=16, iterable=True)
|
||||
py_reader2 = fluid.io.PyReader(
|
||||
feed_list=[image, label], capacity=16, iterable=True)
|
||||
|
||||
reader1 = fluid.io.cache(self.create_reader(self.n1))
|
||||
reader2 = fluid.io.cache(self.create_reader(self.n2))
|
||||
py_reader1.decorate_batch_generator(reader1, places=place)
|
||||
py_reader2.decorate_batch_generator(reader2, places=place)
|
||||
|
||||
for _ in range(10):
|
||||
max_num = min(self.n1, self.n2)
|
||||
batch_num = 0
|
||||
for reader_np1, py_reader_dict1, reader_np2, py_reader_dict2 in zip(
|
||||
reader1(), py_reader1(), reader2(), py_reader2()):
|
||||
self.assertFeedVarEqual(reader_np1, py_reader_dict1)
|
||||
self.assertFeedVarEqual(reader_np2, py_reader_dict2)
|
||||
batch_num += 1
|
||||
|
||||
self.assertEqual(batch_num, max_num)
|
||||
|
||||
def get_places(self):
|
||||
if fluid.is_compiled_with_cuda():
|
||||
return [fluid.CUDAPlace(0), fluid.CPUPlace()]
|
||||
else:
|
||||
return [fluid.CPUPlace()]
|
||||
|
||||
def test_main(self):
|
||||
for p in self.get_places():
|
||||
self.main_impl(p)
|
||||
|
||||
|
||||
class TestPyReaderCombination2(TestPyReaderCombination):
|
||||
def setUp(self):
|
||||
self.n1 = 20
|
||||
self.n2 = 10
|
||||
self.batch_size = 2
|
||||
|
||||
|
||||
class TestPyReaderCombination3(TestPyReaderCombination):
|
||||
def setUp(self):
|
||||
self.n1 = 10
|
||||
self.n2 = 10
|
||||
self.batch_size = 2
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue