|
|
|
@ -839,9 +839,9 @@ def linear_chain_crf(input, label, param_attr=None):
|
|
|
|
|
param_attr(ParamAttr): The attribute of the learnable parameter.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
${log_likelihood_comment}
|
|
|
|
|
${transitionexps_comment}
|
|
|
|
|
${emissionexps_comment}
|
|
|
|
|
output(${emission_exps_type}): ${emission_exps_comment} \n
|
|
|
|
|
output(${transition_exps_type}): ${transition_exps_comment} \n
|
|
|
|
|
output(${log_likelihood_type}): ${log_likelihood_comment}
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
helper = LayerHelper('linear_chain_crf', **locals())
|
|
|
|
@ -4210,7 +4210,7 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
|
|
|
|
|
|
|
|
|
|
.. math::
|
|
|
|
|
|
|
|
|
|
Output(i, x, y) = Input(i, x, y) / \left( \\
|
|
|
|
|
Output(i, x, y) = Input(i, x, y) / \left( \\
|
|
|
|
|
k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)} \\
|
|
|
|
|
(Input(j, x, y))^2\right)^{\beta}
|
|
|
|
|
|
|
|
|
|