|
|
|
@ -17,35 +17,100 @@
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace framework {
|
|
|
|
|
|
|
|
|
|
DDim Reader::shape(int idx) const {
|
|
|
|
|
DDim Reader::shape(size_t idx) const {
|
|
|
|
|
PADDLE_ENFORCE_LT(
|
|
|
|
|
idx, shapes_.size(),
|
|
|
|
|
"Cannot get the %d'th shape, 'shapes_' only has %d elements.", idx,
|
|
|
|
|
shapes_.size());
|
|
|
|
|
return shapes_[idx];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int RandomReader::ReadNext(std::vector<LoDTensor>* outs) {
|
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
|
shapes_.size(), outs.size(),
|
|
|
|
|
"shapes_.size() is %d, while outs.size() is %d. They are not equal.",
|
|
|
|
|
shapes_.size(), outs.size());
|
|
|
|
|
std::minstd_rand engine;
|
|
|
|
|
unsigned int seed = std::random_device()();
|
|
|
|
|
engine.seed(seed);
|
|
|
|
|
std::uniform_real_distribution<float> dist(min_, max_);
|
|
|
|
|
for (int idx = 0; idx < shapes_.size(); ++idx) {
|
|
|
|
|
DDim shape = shapes_[idx];
|
|
|
|
|
LoDTensor* out = outs[idx];
|
|
|
|
|
int64_t numel = out->numel();
|
|
|
|
|
PADDLE_ENFORCE_EQ(product(shape), numel,
|
|
|
|
|
"The product of %d'th shape is %lld, while the "
|
|
|
|
|
"corresponding out's numel is %lld. They are not equal.",
|
|
|
|
|
idx, product(shape), numel);
|
|
|
|
|
for (int64_t i = 0; i < numel, ++i) {
|
|
|
|
|
out[i] = dist(engine);
|
|
|
|
|
std::vector<LoDTensor> ShuffleReader::ReadNext() {
|
|
|
|
|
if (iteration_pos_ >= buffer_.size()) {
|
|
|
|
|
// Reload buffer with new data
|
|
|
|
|
buffer_.clear();
|
|
|
|
|
for (int i = 0; i < buffer_size_; ++i) {
|
|
|
|
|
if (reader_->HasNext()) {
|
|
|
|
|
buffer_.push_back(reader_->ReadNext());
|
|
|
|
|
} else {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
std::random_shuffle(buffer_.begin(), buffer_.end());
|
|
|
|
|
iteration_pos_ = 0;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
|
if (buffer_.empty()) {
|
|
|
|
|
std::vector<LoDTensor> empty_res;
|
|
|
|
|
return empty_res;
|
|
|
|
|
}
|
|
|
|
|
return buffer_[iteration_pos_++];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<LoDTensor> BatchReader::ReadNext() {
|
|
|
|
|
buffer_.clear();
|
|
|
|
|
for (int i = 0; i < batch_size_; ++i) {
|
|
|
|
|
if (reader_->HasNext()) {
|
|
|
|
|
buffer_.push_back(reader_->ReadNext());
|
|
|
|
|
} else {
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Concat instances
|
|
|
|
|
std::vector<LoDTensor> res;
|
|
|
|
|
if (buffer_.empty()) {
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
int out_num = buffer_[0].size();
|
|
|
|
|
res.reserve(out_num);
|
|
|
|
|
for (int j = 0; j < out_num; ++j) {
|
|
|
|
|
// Merge shape and check date type
|
|
|
|
|
std::type_index batch_type = buffer_[0][j].type();
|
|
|
|
|
DDim batch_shape = buffer_[0][j].dims();
|
|
|
|
|
for (size_t i = 1; i < buffer_.size(); ++i) {
|
|
|
|
|
std::type_index ins_type = buffer_[i][j].type();
|
|
|
|
|
DDim ins_shape = buffer_[i][j].dims();
|
|
|
|
|
PADDLE_ENFORCE_EQ(batch_type, ins_type);
|
|
|
|
|
PADDLE_ENFORCE_EQ(slice_ddim(batch_shape, 1, batch_shape.size()),
|
|
|
|
|
slice_ddim(ins_shape, 1, ins_shape.size()));
|
|
|
|
|
PADDLE_ENFORCE_GT(ins_shape[0], 0);
|
|
|
|
|
batch_shape[0] += ins_shape[0];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
LoDTensor out;
|
|
|
|
|
out.Resize(batch_shape);
|
|
|
|
|
out.mutable_data(platform::CPUPlace(), batch_type);
|
|
|
|
|
int64_t dst_offset = 0;
|
|
|
|
|
|
|
|
|
|
// Merge lod and data
|
|
|
|
|
LoD batch_lod;
|
|
|
|
|
std::vector<size_t> top_level_lod({0});
|
|
|
|
|
for (size_t i = 0; i < buffer_.size(); ++i) {
|
|
|
|
|
DDim ins_shape = buffer_[i][j].dims();
|
|
|
|
|
LoD ins_lod = buffer_[i][j].lod();
|
|
|
|
|
if (i == 0) {
|
|
|
|
|
batch_lod = ins_lod;
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_ENFORCE_EQ(batch_lod.size(), ins_lod.size());
|
|
|
|
|
for (size_t level_idx = 0; level_idx < batch_lod.size(); ++level_idx) {
|
|
|
|
|
auto& lod_level = batch_lod[level_idx];
|
|
|
|
|
for (size_t k = 1; k < ins_lod[level_idx].size(); ++k) {
|
|
|
|
|
lod_level.push_back(ins_lod[level_idx][k] + lod_level.back());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
top_level_lod.push_back(
|
|
|
|
|
top_level_lod.back() +
|
|
|
|
|
(ins_lod.empty() ? ins_shape[0] : (ins_lod[0].size() - 1)));
|
|
|
|
|
|
|
|
|
|
Tensor dst = out.Slice(dst_offset, dst_offset + ins_shape[0]);
|
|
|
|
|
Copy(buffer_[i][j], platform::CPUPlace(), &dst);
|
|
|
|
|
dst_offset += ins_shape[0];
|
|
|
|
|
}
|
|
|
|
|
batch_lod.insert(batch_lod.begin(), top_level_lod);
|
|
|
|
|
out.set_lod(batch_lod);
|
|
|
|
|
res.push_back(out);
|
|
|
|
|
}
|
|
|
|
|
return res;
|
|
|
|
|
}
|
|
|
|
|
} // namespace framework
|
|
|
|
|
} // namespace paddle
|
|
|
|
|