|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
@ -24,25 +24,33 @@ using LoDTensor = framework::LoDTensor;
|
|
|
|
|
constexpr int64_t kOutputDim = 6;
|
|
|
|
|
constexpr int64_t kBBoxSize = 4;
|
|
|
|
|
|
|
|
|
|
class MulticlassNMSOp : public framework::OperatorWithKernel {
|
|
|
|
|
class MultiClassNMSOp : public framework::OperatorWithKernel {
|
|
|
|
|
public:
|
|
|
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
|
|
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("Bboxes"),
|
|
|
|
|
"Input(Bboxes) of MulticlassNMS should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("BBoxes"),
|
|
|
|
|
"Input(BBoxes) of MultiClassNMS should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("Scores"),
|
|
|
|
|
"Input(Scores) of MulticlassNMS should not be null.");
|
|
|
|
|
"Input(Scores) of MultiClassNMS should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
|
|
|
"Output(Out) of MultiClassNMS should not be null.");
|
|
|
|
|
|
|
|
|
|
auto box_dims = ctx->GetInputDim("Bboxes");
|
|
|
|
|
auto box_dims = ctx->GetInputDim("BBoxes");
|
|
|
|
|
auto score_dims = ctx->GetInputDim("Scores");
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(box_dims.size(), 2,
|
|
|
|
|
"The rank of Input(Bboxes) must be 3.");
|
|
|
|
|
"The rank of Input(BBoxes) must be 2.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(score_dims.size(), 3,
|
|
|
|
|
"The rank of Input(Scores) must be 3.");
|
|
|
|
|
PADDLE_ENFORCE_EQ(box_dims[1], 4);
|
|
|
|
|
PADDLE_ENFORCE_EQ(box_dims[0], score_dims[2]);
|
|
|
|
|
PADDLE_ENFORCE_EQ(box_dims[1], 4,
|
|
|
|
|
"The 2nd dimension of Input(BBoxes) must be 4, "
|
|
|
|
|
"represents the layout of coordinate "
|
|
|
|
|
"[xmin, ymin, xmax, ymax]");
|
|
|
|
|
PADDLE_ENFORCE_EQ(box_dims[0], score_dims[2],
|
|
|
|
|
"The 1st dimensiong of Input(BBoxes) must be equal to "
|
|
|
|
|
"3rd dimension of Input(Scores), which represents the "
|
|
|
|
|
"predicted bboxes.");
|
|
|
|
|
|
|
|
|
|
// Here the box_dims[0] is not the real dimension of output.
|
|
|
|
|
// It will be rewritten in the computing kernel.
|
|
|
|
@ -86,15 +94,16 @@ static inline void GetMaxScoreIndex(
|
|
|
|
|
template <class T>
|
|
|
|
|
T BBoxArea(const T* box, const bool normalized) {
|
|
|
|
|
if (box[2] < box[0] || box[3] < box[1]) {
|
|
|
|
|
// If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
|
|
|
return T(0.);
|
|
|
|
|
// If coordinate values are is invalid
|
|
|
|
|
// (e.g. xmax < xmin or ymax < ymin), return 0.
|
|
|
|
|
return static_cast<T>(0.);
|
|
|
|
|
} else {
|
|
|
|
|
const T w = box[2] - box[0];
|
|
|
|
|
const T h = box[3] - box[1];
|
|
|
|
|
if (normalized) {
|
|
|
|
|
return w * h;
|
|
|
|
|
} else {
|
|
|
|
|
// If bbox is not within range [0, 1].
|
|
|
|
|
// If coordinate values are not within range [0, 1].
|
|
|
|
|
return (w + 1) * (h + 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -121,7 +130,7 @@ static inline T JaccardOverlap(const T* box1, const T* box2,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
class MultiClassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void NMSFast(const Tensor& bbox, const Tensor& scores,
|
|
|
|
|
const T score_threshold, const T nms_threshold, const T eta,
|
|
|
|
@ -163,10 +172,10 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MulticlassNMS(const framework::ExecutionContext& ctx,
|
|
|
|
|
void MultiClassNMS(const framework::ExecutionContext& ctx,
|
|
|
|
|
const Tensor& scores, const Tensor& bboxes,
|
|
|
|
|
std::map<int, std::vector<int>>* indices,
|
|
|
|
|
int* num_nmsed_out) const {
|
|
|
|
|
std::map<int, std::vector<int>>& indices,
|
|
|
|
|
int& num_nmsed_out) const {
|
|
|
|
|
int64_t background_label = ctx.Attr<int>("background_label");
|
|
|
|
|
int64_t nms_top_k = ctx.Attr<int>("nms_top_k");
|
|
|
|
|
int64_t keep_top_k = ctx.Attr<int>("keep_top_k");
|
|
|
|
@ -181,15 +190,15 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
if (c == background_label) continue;
|
|
|
|
|
Tensor score = scores.Slice(c, c + 1);
|
|
|
|
|
NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
|
|
|
|
|
&((*indices)[c]));
|
|
|
|
|
num_det += (*indices)[c].size();
|
|
|
|
|
&(indices[c]));
|
|
|
|
|
num_det += indices[c].size();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*num_nmsed_out = num_det;
|
|
|
|
|
num_nmsed_out = num_det;
|
|
|
|
|
const T* scores_data = scores.data<T>();
|
|
|
|
|
if (keep_top_k > -1 && num_det > keep_top_k) {
|
|
|
|
|
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
|
|
|
|
|
for (const auto& it : *indices) {
|
|
|
|
|
for (const auto& it : indices) {
|
|
|
|
|
int label = it.first;
|
|
|
|
|
const T* sdata = scores_data + label * predict_dim;
|
|
|
|
|
const std::vector<int>& label_indices = it.second;
|
|
|
|
@ -212,12 +221,12 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
int idx = score_index_pairs[j].second.second;
|
|
|
|
|
new_indices[label].push_back(idx);
|
|
|
|
|
}
|
|
|
|
|
new_indices.swap(*indices);
|
|
|
|
|
*num_nmsed_out = keep_top_k;
|
|
|
|
|
new_indices.swap(indices);
|
|
|
|
|
num_nmsed_out = keep_top_k;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MulticlassOutput(const Tensor& scores, const Tensor& bboxes,
|
|
|
|
|
void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
|
|
|
|
|
std::map<int, std::vector<int>>& selected_indices,
|
|
|
|
|
Tensor* outs) const {
|
|
|
|
|
int predict_dim = scores.dims()[1];
|
|
|
|
@ -229,23 +238,21 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
for (const auto& it : selected_indices) {
|
|
|
|
|
int label = it.first;
|
|
|
|
|
const T* sdata = scores_data + label * predict_dim;
|
|
|
|
|
std::vector<int> indices = it.second;
|
|
|
|
|
const std::vector<int>& indices = it.second;
|
|
|
|
|
for (int j = 0; j < indices.size(); ++j) {
|
|
|
|
|
int idx = indices[j];
|
|
|
|
|
const T* bdata = bboxes_data + idx * kBBoxSize;
|
|
|
|
|
odata[count * kOutputDim] = label; // label
|
|
|
|
|
odata[count * kOutputDim + 1] = sdata[idx]; // score
|
|
|
|
|
odata[count * kOutputDim + 2] = bdata[0]; // xmin
|
|
|
|
|
odata[count * kOutputDim + 3] = bdata[1]; // ymin
|
|
|
|
|
odata[count * kOutputDim + 4] = bdata[2]; // xmax
|
|
|
|
|
odata[count * kOutputDim + 5] = bdata[3]; // ymax
|
|
|
|
|
// xmin, ymin, xmax, ymax
|
|
|
|
|
std::memcpy(odata + count * kOutputDim + 2, bdata, 4 * sizeof(T));
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
auto* boxes = ctx.Input<Tensor>("Bboxes");
|
|
|
|
|
auto* boxes = ctx.Input<Tensor>("BBoxes");
|
|
|
|
|
auto* scores = ctx.Input<Tensor>("Scores");
|
|
|
|
|
auto* outs = ctx.Output<LoDTensor>("Out");
|
|
|
|
|
|
|
|
|
@ -262,7 +269,7 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
ins_score.Resize({class_num, predict_dim});
|
|
|
|
|
std::map<int, std::vector<int>> indices;
|
|
|
|
|
int num_nmsed_out = 0;
|
|
|
|
|
MulticlassNMS(ctx, ins_score, *boxes, &indices, &num_nmsed_out);
|
|
|
|
|
MultiClassNMS(ctx, ins_score, *boxes, indices, num_nmsed_out);
|
|
|
|
|
all_indices.push_back(indices);
|
|
|
|
|
batch_starts.push_back(batch_starts.back() + num_nmsed_out);
|
|
|
|
|
}
|
|
|
|
@ -280,7 +287,7 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
int64_t e = batch_starts[i + 1];
|
|
|
|
|
if (e > s) {
|
|
|
|
|
Tensor out = outs->Slice(s, e);
|
|
|
|
|
MulticlassOutput(ins_score, *boxes, all_indices[i], &out);
|
|
|
|
|
MultiClassOutput(ins_score, *boxes, all_indices[i], &out);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -292,28 +299,31 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
class MulticlassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
public:
|
|
|
|
|
MulticlassNMSOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
|
|
|
MultiClassNMSOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
|
|
AddInput("Bboxes",
|
|
|
|
|
"(Tensor) A 2-D Tensor with shape [M, 4] represents the location "
|
|
|
|
|
"predictions with M bboxes. 4 is the number of "
|
|
|
|
|
"each location coordinates.");
|
|
|
|
|
AddInput("BBoxes",
|
|
|
|
|
"(Tensor) A 2-D Tensor with shape [M, 4] represents the "
|
|
|
|
|
"predicted locations of M bounding bboxes. Each bounding box "
|
|
|
|
|
"has four coordinate values and the layout is "
|
|
|
|
|
"[xmin, ymin, xmax, ymax].");
|
|
|
|
|
AddInput("Scores",
|
|
|
|
|
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
|
|
|
|
|
"confidence predictions. N is the batch size, C is the class "
|
|
|
|
|
"number, M is number of predictions for each class, which is "
|
|
|
|
|
"the same with Bboxes.");
|
|
|
|
|
"predicted confidence predictions. N is the batch size, C is the "
|
|
|
|
|
"class number, M is number of bounding boxes. For each category "
|
|
|
|
|
"there are total M scores which corresponding M bounding boxes. "
|
|
|
|
|
" Please note, M is equal to the 1st dimension of BBoxes. ");
|
|
|
|
|
AddAttr<int>(
|
|
|
|
|
"background_label",
|
|
|
|
|
"(int64_t, defalut: 0) "
|
|
|
|
|
"The index of background label, the background label will be ignored.")
|
|
|
|
|
"The index of background label, the background label will be ignored. "
|
|
|
|
|
"If set to -1, then all categories will be considered.")
|
|
|
|
|
.SetDefault(0);
|
|
|
|
|
AddAttr<float>("score_threshold",
|
|
|
|
|
"(float) "
|
|
|
|
|
"Only consider detections whose confidences are larger than "
|
|
|
|
|
"a threshold. If not provided, consider all boxes.");
|
|
|
|
|
"Threshold to filter out bounding boxes with low "
|
|
|
|
|
"confidence score. If not provided, consider all boxes.");
|
|
|
|
|
AddAttr<int>("nms_top_k",
|
|
|
|
|
"(int64_t) "
|
|
|
|
|
"Maximum number of detections to be kept according to the "
|
|
|
|
@ -368,8 +378,8 @@ value which is -1.
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
REGISTER_OPERATOR(multiclass_nms, ops::MulticlassNMSOp,
|
|
|
|
|
ops::MulticlassNMSOpMaker,
|
|
|
|
|
REGISTER_OPERATOR(multiclass_nms, ops::MultiClassNMSOp,
|
|
|
|
|
ops::MultiClassNMSOpMaker,
|
|
|
|
|
paddle::framework::EmptyGradOpMaker);
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MulticlassNMSKernel<float>,
|
|
|
|
|
ops::MulticlassNMSKernel<double>);
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MultiClassNMSKernel<float>,
|
|
|
|
|
ops::MultiClassNMSKernel<double>);
|
|
|
|
|