|
|
|
@ -81,6 +81,8 @@ __all__ = [
|
|
|
|
|
'label_smooth',
|
|
|
|
|
'roi_pool',
|
|
|
|
|
'dice_loss',
|
|
|
|
|
'image_resize',
|
|
|
|
|
'image_resize_short',
|
|
|
|
|
'resize_bilinear',
|
|
|
|
|
'gather',
|
|
|
|
|
'random_crop',
|
|
|
|
@ -4036,7 +4038,7 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'):
|
|
|
|
|
This is a 4-D tensor of the shape
|
|
|
|
|
(num_batches, channels, in_h, in_w).
|
|
|
|
|
out_short_len(int): The length of output images' short edge.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
out (Variable): The output is a 4-D tensor of the shape
|
|
|
|
|
(num_batches, channls, out_h, out_w).
|
|
|
|
@ -4050,9 +4052,9 @@ def image_resize_short(input, out_short_len, resample='BILINEAR'):
|
|
|
|
|
long_idx = 1 - short_idx
|
|
|
|
|
out_shape = list(hw)
|
|
|
|
|
out_shape[short_idx] = out_short_len
|
|
|
|
|
out_shape[long_idx] = round(
|
|
|
|
|
float(out_shape[long_idx]) *
|
|
|
|
|
(float(out_short_len) / float(hw[short_idx])))
|
|
|
|
|
out_shape[long_idx] = int(
|
|
|
|
|
float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
|
|
|
|
|
short_idx])) + 0.5)
|
|
|
|
|
return image_resize(input=input, out_shape=out_shape, resample=resample)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|