add split ids op (#9370)
* add split_ids_op * add TestSplitIdsOp * fix comment * add test for empty tensor * clean code * rm unused codehelinwang-patch-1
parent
2e4a398638
commit
f3dc3112cc
@ -0,0 +1,76 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/split_ids_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SplitIdsOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
SplitIdsOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}");
|
||||
AddOutput("Out", "(LoDTensor) The outputs of the input Ids.")
|
||||
.AsDuplicable();
|
||||
|
||||
AddComment(R"DOC(
|
||||
Split a LoDTensor of Ids into multi LoDTensors, the number is pserver's number
|
||||
Example:
|
||||
Input:
|
||||
X = [1,2,3,4,5,6]
|
||||
|
||||
Out(3 output):
|
||||
out0 = [3, 6]
|
||||
out1 = [1, 4]
|
||||
out2 = [2, 5]
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SplitIdsOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Ids"), "SplitIdsOp must has input Ids.");
|
||||
PADDLE_ENFORCE(ctx->HasOutputs("Out"), "SplitIdsOp must has output Out.");
|
||||
|
||||
auto ids_var_type = ctx->GetInputsVarType("Ids").front();
|
||||
PADDLE_ENFORCE_EQ(ids_var_type, framework::proto::VarType::LOD_TENSOR);
|
||||
|
||||
auto ids_dims = ctx->GetInputDim("Ids");
|
||||
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
|
||||
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
|
||||
}
|
||||
};
|
||||
|
||||
class SplitIdsOpInferVarType : public framework::VarTypeInference {
|
||||
public:
|
||||
void operator()(const framework::OpDesc &op_desc,
|
||||
framework::BlockDesc *block) const override {
|
||||
for (auto &out_var : op_desc.Output("Out")) {
|
||||
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(split_ids, ops::SplitIdsOp, ops::SplitIdsOpMaker,
|
||||
ops::SplitIdsOpInferVarType);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
split_ids, ops::SplitIdsOpKernel<paddle::platform::CPUPlace, int64_t>);
|
@ -0,0 +1,65 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SplitIdsOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto place = ctx.GetPlace();
|
||||
if (!platform::is_cpu_place(place)) {
|
||||
PADDLE_THROW("SplitIds do not support GPU kernel");
|
||||
}
|
||||
|
||||
const auto* ids_t = ctx.Input<framework::LoDTensor>("Ids");
|
||||
auto& ids_dims = ids_t->dims();
|
||||
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
|
||||
|
||||
const T* ids = ids_t->data<T>();
|
||||
|
||||
const size_t shard_num = outs.size();
|
||||
|
||||
std::vector<std::vector<T>> out_ids;
|
||||
out_ids.resize(outs.size());
|
||||
|
||||
// split id by their shard_num.
|
||||
for (size_t i = 0; i < ids_dims[0]; ++i) {
|
||||
T id = ids[i];
|
||||
size_t shard_id = static_cast<size_t>(id) % shard_num;
|
||||
out_ids[shard_id].push_back(id);
|
||||
}
|
||||
|
||||
// create tensor for each shard and send to parameter server
|
||||
for (size_t i = 0; i < out_ids.size(); ++i) {
|
||||
auto* shard_t = outs[i];
|
||||
std::vector<T> ids = out_ids[i];
|
||||
auto* shard_data = shard_t->mutable_data<T>(
|
||||
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
|
||||
for (size_t i = 0; i < ids.size(); ++i) {
|
||||
shard_data[i] = ids[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,35 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestSplitIdsOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "split_ids"
|
||||
ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64')
|
||||
out0 = np.array([[0], [3], [6]]).astype('int64')
|
||||
out1 = np.array([[]]).astype('int64')
|
||||
out2 = np.array([[2], [2], [5], [5]]).astype('int64')
|
||||
self.inputs = {'Ids': ids}
|
||||
self.outputs = {'Out': [('out0', out0), ('out1', out1), ('out2', out2)]}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue