add split ids op (#9370)

* add split_ids_op

* add TestSplitIdsOp

* fix comment

* add test for empty tensor

* clean code

* rm unused code
helinwang-patch-1
Qiao Longfei 7 years ago committed by GitHub
parent 2e4a398638
commit f3dc3112cc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,76 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/split_ids_op.h"
namespace paddle {
namespace operators {
class SplitIdsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SplitIdsOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Ids", "(LoDTensor) the input ids with shape{batch_num, 1}");
AddOutput("Out", "(LoDTensor) The outputs of the input Ids.")
.AsDuplicable();
AddComment(R"DOC(
Split a LoDTensor of Ids into multi LoDTensors, the number is pserver's number
Example:
Input:
X = [1,2,3,4,5,6]
Out(3 output):
out0 = [3, 6]
out1 = [1, 4]
out2 = [2, 5]
)DOC");
}
};
class SplitIdsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Ids"), "SplitIdsOp must has input Ids.");
PADDLE_ENFORCE(ctx->HasOutputs("Out"), "SplitIdsOp must has output Out.");
auto ids_var_type = ctx->GetInputsVarType("Ids").front();
PADDLE_ENFORCE_EQ(ids_var_type, framework::proto::VarType::LOD_TENSOR);
auto ids_dims = ctx->GetInputDim("Ids");
PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
PADDLE_ENFORCE_EQ(ids_dims[1], 1);
}
};
class SplitIdsOpInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
for (auto &out_var : op_desc.Output("Out")) {
block->Var(out_var)->SetType(framework::proto::VarType::LOD_TENSOR);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(split_ids, ops::SplitIdsOp, ops::SplitIdsOpMaker,
ops::SplitIdsOpInferVarType);
REGISTER_OP_CPU_KERNEL(
split_ids, ops::SplitIdsOpKernel<paddle::platform::CPUPlace, int64_t>);

@ -0,0 +1,65 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class SplitIdsOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto place = ctx.GetPlace();
if (!platform::is_cpu_place(place)) {
PADDLE_THROW("SplitIds do not support GPU kernel");
}
const auto* ids_t = ctx.Input<framework::LoDTensor>("Ids");
auto& ids_dims = ids_t->dims();
auto outs = ctx.MultiOutput<framework::LoDTensor>("Out");
const T* ids = ids_t->data<T>();
const size_t shard_num = outs.size();
std::vector<std::vector<T>> out_ids;
out_ids.resize(outs.size());
// split id by their shard_num.
for (size_t i = 0; i < ids_dims[0]; ++i) {
T id = ids[i];
size_t shard_id = static_cast<size_t>(id) % shard_num;
out_ids[shard_id].push_back(id);
}
// create tensor for each shard and send to parameter server
for (size_t i = 0; i < out_ids.size(); ++i) {
auto* shard_t = outs[i];
std::vector<T> ids = out_ids[i];
auto* shard_data = shard_t->mutable_data<T>(
framework::make_ddim({static_cast<int64_t>(ids.size()), 1}), place);
for (size_t i = 0; i < ids.size(); ++i) {
shard_data[i] = ids[i];
}
}
}
};
} // namespace operators
} // namespace paddle

@ -0,0 +1,35 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestSplitIdsOp(OpTest):
def setUp(self):
self.op_type = "split_ids"
ids = np.array([[0], [2], [2], [3], [5], [5], [6]]).astype('int64')
out0 = np.array([[0], [3], [6]]).astype('int64')
out1 = np.array([[]]).astype('int64')
out2 = np.array([[2], [2], [5], [5]]).astype('int64')
self.inputs = {'Ids': ids}
self.outputs = {'Out': [('out0', out0), ('out1', out1), ('out2', out2)]}
def test_check_output(self):
self.check_output()
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save