Merge pull request #7688 from reyoung/feature/python_overload_math_operators
Add math operator patchesadd_depthwiseConv_op_gpu
commit
f45b0b0661
@ -0,0 +1,152 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ..framework import Variable, unique_name
|
||||
from ..registry import OpProtoHolder
|
||||
|
||||
__all__ = ['monkey_patch_variable']
|
||||
|
||||
|
||||
def monkey_patch_variable():
|
||||
def unique_tmp_name():
|
||||
return unique_name("tmp")
|
||||
|
||||
def safe_get_dtype(var):
|
||||
try:
|
||||
dtype = var.dtype
|
||||
except:
|
||||
raise ValueError("Cannot get data type from %s", var.name)
|
||||
return dtype
|
||||
|
||||
def create_tensor(block, value, dtype, shape):
|
||||
value = float(value)
|
||||
tmp_name = unique_tmp_name()
|
||||
var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
|
||||
block.append_op(
|
||||
type="fill_constant",
|
||||
outputs={'Out': [var]},
|
||||
attrs={'dtype': var.dtype,
|
||||
'shape': shape,
|
||||
'value': value})
|
||||
return var
|
||||
|
||||
def create_scalar(block, value, dtype):
|
||||
return create_tensor(block, value, dtype, shape=[1])
|
||||
|
||||
def create_tensor_with_batchsize(ref_var, value, dtype):
|
||||
assert isinstance(ref_var, Variable)
|
||||
value = float(value)
|
||||
tmp_name = unique_tmp_name()
|
||||
var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
|
||||
ref_var.block.append_op(
|
||||
type='fill_constant_batch_size_like',
|
||||
outputs={'Out': [var]},
|
||||
inputs={'Input': [ref_var]},
|
||||
attrs={'shape': ref_var.shape,
|
||||
'value': value})
|
||||
return var
|
||||
|
||||
def astype(self, dtype):
|
||||
"""
|
||||
Cast a variable to a specified data type.
|
||||
NOTE: The variable must be a Tensor
|
||||
Args:
|
||||
self(Variable): The source variable
|
||||
dtype: The target dtype
|
||||
|
||||
Returns:
|
||||
Variable with new dtype
|
||||
"""
|
||||
tmp_name = unique_tmp_name()
|
||||
out = self.block.create_var(name=tmp_name, dtype=dtype)
|
||||
self.block.append_op(
|
||||
type="cast",
|
||||
inputs={"X": [self]},
|
||||
outputs={"Out": [out]},
|
||||
attrs={"in_dtype": self.dtype,
|
||||
"out_dtype": out.dtype})
|
||||
return out
|
||||
|
||||
def _elemwise_method_creator_(method_name, op_type, reverse=False):
|
||||
def __impl__(self, other_var):
|
||||
lhs_dtype = safe_get_dtype(self)
|
||||
|
||||
if not isinstance(other_var, Variable):
|
||||
if reverse:
|
||||
has_batch_size = False
|
||||
for elem in self.shape:
|
||||
if elem < 0:
|
||||
has_batch_size = True
|
||||
break
|
||||
if not has_batch_size:
|
||||
other_var = create_tensor(
|
||||
self.block,
|
||||
other_var,
|
||||
dtype=lhs_dtype,
|
||||
shape=self.shape)
|
||||
else:
|
||||
other_var = create_tensor_with_batchsize(
|
||||
self, other_var, lhs_dtype)
|
||||
else:
|
||||
# add fill_op to self.block
|
||||
other_var = create_scalar(
|
||||
self.block, value=other_var, dtype=lhs_dtype)
|
||||
|
||||
rhs_dtype = safe_get_dtype(other_var)
|
||||
if lhs_dtype != rhs_dtype:
|
||||
other_var = astype(other_var, lhs_dtype)
|
||||
if reverse:
|
||||
tmp = self
|
||||
self = other_var
|
||||
other_var = tmp
|
||||
|
||||
tmp_name = unique_tmp_name()
|
||||
out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
|
||||
self.block.append_op(
|
||||
type=op_type,
|
||||
inputs={'X': [self],
|
||||
'Y': [other_var]},
|
||||
outputs={'Out': out})
|
||||
return out
|
||||
|
||||
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
|
||||
|
||||
__impl__.__doc__ = """
|
||||
{0}
|
||||
Args:
|
||||
self(Variable): left hand variable
|
||||
other_var(Variable|float|int): right hand variable
|
||||
|
||||
Returns:
|
||||
Variable
|
||||
""".format(comment)
|
||||
__impl__.__name__ = method_name
|
||||
return __impl__
|
||||
|
||||
# inject methods
|
||||
for method_name, op_type, reverse in (
|
||||
("__add__", "elementwise_add", False),
|
||||
# a+b == b+a. Do not need to reverse explicitly
|
||||
("__radd__", "elementwise_add", False),
|
||||
("__sub__", "elementwise_sub", False),
|
||||
("__rsub__", "elementwise_sub", True),
|
||||
("__mul__", "elementwise_mul", False),
|
||||
# a*b == b*a. Do not need to reverse explicitly
|
||||
("__rmul__", "elementwise_mul", False),
|
||||
("__div__", "elementwise_div", False),
|
||||
("__rdiv__", "elementwise_div", True)):
|
||||
setattr(Variable, method_name,
|
||||
_elemwise_method_creator_(method_name, op_type, reverse))
|
||||
|
||||
Variable.astype = astype
|
@ -0,0 +1,181 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import decorators
|
||||
import paddle.v2.fluid as fluid
|
||||
import numpy
|
||||
|
||||
|
||||
class TestMathOpPatches(unittest.TestCase):
|
||||
@decorators.prog_scope()
|
||||
def test_add_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = a + 10
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(a_np + 10, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_radd_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = 10 + a
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(a_np + 10, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_sub_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = a - 10
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(a_np - 10, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_radd_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = 10 - a
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(10 - a_np, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_mul_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = a * 10
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(a_np * 10, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_rmul_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = 10 * a
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(10 * a_np, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_div_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = a / 10
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(a_np / 10, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_rdiv_scalar(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = 10 / a
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
|
||||
|
||||
b_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np},
|
||||
fetch_list=[b])
|
||||
self.assertTrue(numpy.allclose(10 / a_np, b_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_div_two_tensor(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = fluid.layers.data(name="b", shape=[1])
|
||||
c = a / b
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
|
||||
c_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np,
|
||||
'b': b_np},
|
||||
fetch_list=[c])
|
||||
self.assertTrue(numpy.allclose(a_np / b_np, c_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_mul_two_tensor(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = fluid.layers.data(name="b", shape=[1])
|
||||
c = a * b
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
c_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np,
|
||||
'b': b_np},
|
||||
fetch_list=[c])
|
||||
self.assertTrue(numpy.allclose(a_np * b_np, c_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_add_two_tensor(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = fluid.layers.data(name="b", shape=[1])
|
||||
c = a + b
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
c_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np,
|
||||
'b': b_np},
|
||||
fetch_list=[c])
|
||||
self.assertTrue(numpy.allclose(a_np + b_np, c_np))
|
||||
|
||||
@decorators.prog_scope()
|
||||
def test_sub_two_tensor(self):
|
||||
a = fluid.layers.data(name="a", shape=[1])
|
||||
b = fluid.layers.data(name="b", shape=[1])
|
||||
c = a - b
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
||||
c_np = exe.run(fluid.default_main_program(),
|
||||
feed={"a": a_np,
|
||||
'b': b_np},
|
||||
fetch_list=[c])
|
||||
self.assertTrue(numpy.allclose(a_np - b_np, c_np))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue