Merge branch 'develop' into anakin_test

python3
luotao1 7 years ago
commit f4bcee1d6f

@ -175,6 +175,7 @@ include(external/any) # download libn::any
include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
include(external/cares)
include(external/cub)
if(WITH_DISTRIBUTE)
if(WITH_GRPC)

@ -0,0 +1,35 @@
if(NOT WITH_GPU)
return()
endif()
include(ExternalProject)
set(CUB_SOURCE_DIR ${THIRD_PARTY_PATH}/cub)
set(CUB_INCLUDE_DIR ${CUB_SOURCE_DIR}/src/extern_cub)
include_directories(${CUB_INCLUDE_DIR})
ExternalProject_Add(
extern_cub
${EXTERNAL_PROJECT_LOG_ARGS}
GIT_REPOSITORY "https://github.com/NVlabs/cub.git"
GIT_TAG "v1.8.0"
PREFIX ${CUB_SOURCE_DIR}
UPDATE_COMMAND ""
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
INSTALL_COMMAND ""
TEST_COMMAND ""
)
if(${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cub_dummy.c)
file(WRITE ${dummyfile} "const char *dummy = \"${dummyfile}\";")
add_library(cub STATIC ${dummyfile})
else()
add_library(cub INTERFACE)
endif()
add_dependencies(cub extern_cub)
LIST(APPEND externl_project_dependencies cub)

@ -0,0 +1,20 @@
# Operator fusion
Fusing multiple operators together is an important method to optimize the program execution, particularly for GPU or other specialized accelerators. An obvious benefit is to avoid the overhead of saving the intermediate result back into global memory.
There are generally two ways to fuse operators, fusing directly connected operators and fusing non directly connected operators. The first method is mainly used by [NNVM Compiler](https://github.com/dmlc/tvm/) and [XLA](https://www.tensorflow.org/performance/xla/). The second method is mainly used by Dynet and TensorFlow Fold to do auto-batching. The principle of fusing operator is according to some rules to combine multiple operations into one, for example, `Y = X * W` and `Z = Y + B` can be fused to `Z = X * W + B`, and `Y1 = X1 * W` and `Y2 = X2 * W` can be fused to `[Y1;Y2] = [X1;X2] * W`. In order to get a short-term profit, we decided to try to manually specify these rules.
## Challenge
The challenge of fusing operators is:
- how to make the rules.
- how to implement these rules efficiently.
### How to make the rules?
The problem of determining the best single location for a fusion operator is an NP-hard combinatorial problem. After analysis the operators of the DL model, we found there are two group of operators can be fused explicitly, one is the simple and adjacent operations, for example, `tmp = x + y` and `z = Relu(tmp)`, and the other is the operators that have the same function, for example, a serials of `SGD` or `Momentum`. They usually appear in the model in a large number. So we should think about how to fuse them separately first.
### How to implement these rules efficiently?
#### How to fuse the adjacent operations efficiently?
Here we use a template function to represent the fused operations. The pros of using a template function are that it is simple and efficient, and the cons are that it is not easy to expand, and it can only be used to express some simple operations. So taking into account our current needs, the template function is more appropriate.
#### How to fuse the operators that have the same function efficiently?
We take SGD operator as an example, the training model may have hundreds of parameters and correspondingly have the same number of SGD operators. The expression(`w = w - lr*w_g`) of those operators is the same, so during of training, the executor will execute this expression hundreds time in CPU or other specialized accelerators. If we can fuse them and make the address of all `w` and all `w_g` continuous respectively, we only need execute one time. For some accelerators, the time of launching kernel is not neglected, so the time of hundreds of times of launching and executing kernel may be larger than launching and executing only once. There usually are many operators that similar to `SGD` in the DL model, such as `AllReduce` and `FC`.

@ -336,6 +336,7 @@ paddle.fluid.contrib.BeamSearchDecoder.decode ArgSpec(args=['self'], varargs=Non
paddle.fluid.contrib.BeamSearchDecoder.early_stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init', 'is_ids', 'is_scores'], varargs=None, keywords=None, defaults=(False, False))
paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array', 'value'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.create_splited_vars ArgSpec(args=['self', 'source_var', 'block', 'tag'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)

@ -275,7 +275,8 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
if (strategy_.gradient_scale_ !=
BuildStrategy::GradientScaleStrategy::kCustomized) {
// TODO(paddle-dev): Why is there no input for this op_handle?
CreateScaleLossGradOp(&result);
auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
CreateScaleLossGradOp(&result, loss_grad_name);
}
// This assumes the backward generating code will ensure IsScaleLossOp
// is true only for the op that scale the final scalar loss.
@ -535,7 +536,8 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(const ir::Graph &graph,
return got == sharded_var_device.end() ? -1 : got->second;
}
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(ir::Graph *result) const {
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
ir::Graph *result, const std::string &loss_grad_name) const {
for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
#ifdef PADDLE_WITH_CUDA
@ -558,10 +560,10 @@ void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(ir::Graph *result) const {
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
CreateOpOutput(result, op_handle,
result->CreateEmptyNode(GradVarName(loss_var_name_),
ir::Node::Type::kVariable),
places_[i], i);
CreateOpOutput(
result, op_handle,
result->CreateEmptyNode(loss_grad_name, ir::Node::Type::kVariable),
places_[i], i);
}
}

@ -75,7 +75,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
void CreateComputationalOps(ir::Graph *result, ir::Node *node,
size_t num_places) const;
void CreateScaleLossGradOp(ir::Graph *result) const;
void CreateScaleLossGradOp(ir::Graph *result,
const std::string &loss_grad_name) const;
VarHandle *CreateReduceOp(ir::Graph *result, const std::string &og,
int dst_dev_id) const;
void CreateComputationalOp(ir::Graph *result, ir::Node *node,

@ -330,12 +330,7 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
}
for (auto& op : ctx->ops_) {
VLOG(4) << place_ << " " << op->DebugStringEx(local_scope);
op->Run(*local_scope, place_);
// NOTE! Please do not delete this line, it's usefull because the debug
// string before and after op.run are different, after run the output
// will have right shape which is usefull for debug.
VLOG(3) << place_ << " " << op->DebugStringEx(local_scope);
if (FLAGS_benchmark) {
VLOG(2) << "Memory used after operator " + op->Type() + " running: "

@ -127,7 +127,7 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
}
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
VLOG(10) << "- " << DebugStringEx(&scope);
VLOG(4) << place << " " << DebugStringEx(&scope);
if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("Cannot run operator on place %s", place);
@ -139,7 +139,7 @@ void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
platform::RecordEvent record_event(Type(), pool.Get(place));
RunImpl(scope, place);
VLOG(10) << "+ " << DebugStringEx(&scope);
VLOG(3) << place << " " << DebugStringEx(&scope);
}
bool OperatorBase::HasInputs(const std::string& name) const {
@ -778,6 +778,7 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
const ExecutionContext& ctx) const {
auto& scope = ctx.scope();
int data_type = -1;
std::string last_input_name;
for (auto& input : this->inputs_) {
for (auto& ipt_name : input.second) {
auto* var = scope.FindVar(ipt_name);
@ -794,9 +795,10 @@ proto::VarType::Type OperatorWithKernel::IndicateDataType(
int tmp = static_cast<int>(ToDataType(t->type()));
PADDLE_ENFORCE(
tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be the same. Get %d != %d", Type(),
data_type, tmp);
"DataType of Paddle Op %s must be the same. Get %s(%d) != %s(%d)",
Type(), last_input_name, data_type, ipt_name, tmp);
data_type = tmp;
last_input_name = ipt_name;
}
}
}

@ -24,7 +24,7 @@
namespace paddle {
DEFINE_bool(inference_analysis_enable_tensorrt_subgraph_engine, false,
DEFINE_bool(inference_analysis_enable_tensorrt_subgraph_engine, true,
"Enable subgraph to TensorRT engine for acceleration");
DEFINE_string(inference_analysis_graphviz_log_root, "./",
@ -42,10 +42,19 @@ class DfgPassManagerImpl final : public DfgPassManager {
// TODO(Superjomn) set the key with pass reprs.
AddPass("fluid-to-data-flow-graph", new FluidToDataFlowGraphPass);
if (FLAGS_inference_analysis_enable_tensorrt_subgraph_engine) {
auto trt_teller = [](const Node* node) {
auto trt_teller = [&](const Node* node) {
std::unordered_set<std::string> teller_set(
{"elementwise_add", "mul", "conv2d", "pool2d", "relu"});
if (!node->IsFunction()) return false;
return static_cast<const Function*>(node)->func_type() == "mul";
const auto* func = static_cast<const Function*>(node);
if (teller_set.count(func->func_type()))
return true;
else {
return false;
}
};
AddPass("tensorrt-subgraph-marker",
new TensorRTSubgraphNodeMarkPass(trt_teller));
AddPass("tensorrt-subgraph", new TensorRTSubGraphPass(trt_teller));

@ -337,6 +337,34 @@ ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph) { // NOLINT
std::vector<Node *>(outputs.begin(), outputs.end()));
}
void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph) {
std::vector<Node *> op_nodes;
for (auto &node : GraphTraits<DataFlowGraph>(graph).nodes_in_TS()) {
if (node.type() == Node::Type::kValue || node.deleted()) {
continue;
}
op_nodes.push_back(&node);
}
size_t op_num = op_nodes.size();
for (size_t i = 0; i < op_num; i++) {
if (op_nodes[i]->type() == Node::Type::kFunction) continue;
std::unordered_set<std::string> follow_up_input_names;
for (size_t j = i + 1; j < op_num; j++) {
for (auto *in : op_nodes[j]->inlinks) {
follow_up_input_names.insert(in->name());
}
}
std::vector<Node *> filtered_subgraph_outlinks;
for (auto *out : op_nodes[i]->outlinks) {
if (follow_up_input_names.count(out->name())) {
filtered_subgraph_outlinks.push_back(out);
}
}
PADDLE_ENFORCE_GE(filtered_subgraph_outlinks.size(), 1UL);
op_nodes[i]->outlinks = filtered_subgraph_outlinks;
}
}
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -178,6 +178,7 @@ struct GraphTraits<DataFlowGraph> {
std::pair<std::vector<Node *>, std::vector<Node *>>
ExtractInputAndOutputOfSubGraph(std::vector<Node *> &graph); // NOLINT
void FilterRedundantOutputOfSubGraph(DataFlowGraph *graph);
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -23,7 +23,7 @@
namespace paddle {
namespace inference {
DEFINE_int32(tensorrt_max_batchsize, 300, "TensorRT maximum batch size");
DEFINE_int32(tensorrt_max_batchsize, 3, "TensorRT maximum batch size");
DEFINE_int32(tensorrt_workspace_size, 2048, "TensorRT workspace size");
namespace analysis {
@ -52,6 +52,7 @@ bool DataFlowGraphToFluidPass::Initialize(Argument *argument) {
bool DataFlowGraphToFluidPass::Finalize() { return true; }
void DataFlowGraphToFluidPass::Run(DataFlowGraph *graph) {
FilterRedundantOutputOfSubGraph(graph);
LOG(INFO) << "graph.inputs " << graph->inputs.size();
for (auto &node : GraphTraits<DataFlowGraph>(graph).nodes_in_TS()) {
if (node.deleted()) continue;
@ -87,34 +88,113 @@ void DataFlowGraphToFluidPass::AddFluidOp(Node *node) {
}
void CreateTrtEngineOp(Node *node, const DataFlowGraph &graph,
const framework::proto::BlockDesc &block) {
framework::proto::BlockDesc *block) {
static int counter{0};
PADDLE_ENFORCE(node->IsFunctionBlock());
framework::OpDesc desc;
auto *func = static_cast<FunctionBlock *>(node);
// collect inputs
std::vector<std::string> io;
std::unordered_set<std::string> input_names;
for (auto *x : func->inlinks) {
io.push_back(x->name());
input_names.insert(x->name());
}
desc.SetInput("Xs", io);
desc.SetInput(
"Xs", std::vector<std::string>(input_names.begin(), input_names.end()));
// collect outputs
io.clear();
std::unordered_set<std::string> output_names;
for (auto *x : func->outlinks) {
io.push_back(x->name());
output_names.insert(x->name());
}
desc.SetOutput("Ys", io);
std::vector<std::string> output_temp(output_names.begin(),
output_names.end());
desc.SetOutput("Ys", output_temp);
desc.SetType("tensorrt_engine");
PADDLE_ENFORCE(!block.vars().empty(), "the block has no var-desc");
std::unordered_map<std::string, std::string> output_name_map;
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
// Why we do this?
// During the transition from fluid OP to tensorrt OP, we map
// the input and output Tensor(fluid data structure) of fluid OP
// to the correspondin ITensor (trt data structure) through the
// Tensor name. When we set up ITensor for an variable, we must
// ensure that it has not been set before.
// If there is variable in the fluid graph, which is not only the
// input of a OP, but also the output of a Op, there will be problems.
// So we have to rename the variable in the subgraph to make sure
// it is either an OP's input or an OP's output.
auto subgraph_nodes = func->subgraph;
for (int index = 0; index < block->ops_size(); index++) {
framework::proto::OpDesc *op = block->mutable_ops(index);
auto correspond_node = subgraph_nodes[index];
PADDLE_ENFORCE_EQ(correspond_node->name(), op->type());
std::unordered_map<std::string, size_t> var2id;
for (auto *in_var : correspond_node->inlinks) {
var2id[in_var->name()] = in_var->id();
}
// rename for the input variables of op inside subgraph
for (int i = 0; i < op->inputs_size(); i++) {
framework::proto::OpDesc_Var *in_var = op->mutable_inputs(i);
std::vector<std::string> replaced_names;
for (int k = 0; k < in_var->arguments_size(); k++) {
std::string arg_value = in_var->arguments(k);
if (input_names.count(arg_value)) {
replaced_names.push_back(arg_value);
} else {
replaced_names.push_back(arg_value +
std::to_string(var2id[arg_value]));
}
}
in_var->clear_arguments();
for (size_t k = 0; k < replaced_names.size(); k++) {
in_var->add_arguments(replaced_names[k]);
}
}
var2id.clear();
for (auto out_var : correspond_node->outlinks) {
var2id[out_var->name()] = out_var->id();
}
// rename for the output variables of op inside subgraph
for (int i = 0; i < op->outputs_size(); i++) {
framework::proto::OpDesc_Var *out_var = op->mutable_outputs(i);
std::vector<std::string> replaced_names;
for (int k = 0; k < out_var->arguments_size(); k++) {
std::string arg_value = out_var->arguments(k);
if (output_names.count(arg_value)) {
output_name_map[arg_value] =
arg_value + std::to_string(var2id[arg_value]);
}
replaced_names.push_back(arg_value + std::to_string(var2id[arg_value]));
}
out_var->clear_arguments();
for (size_t k = 0; k < replaced_names.size(); k++) {
out_var->add_arguments(replaced_names[k]);
}
}
}
// When tensorrt engine runs at the end of the operation,
// output_mapping help us copy the data from the renamed ITensor
// to Tensor.
std::vector<std::string> output_mapping;
for (auto name : output_names) {
PADDLE_ENFORCE(output_name_map.count(name) != 0);
output_mapping.push_back(output_name_map[name]);
}
PADDLE_ENFORCE(!block->vars().empty(), "the block has no var-desc");
// Set attrs
SetAttr(desc.Proto(), "subgraph", block.SerializeAsString());
SetAttr(desc.Proto(), "subgraph", block->SerializeAsString());
SetAttr(desc.Proto(), "engine_uniq_key", "trt-" + std::to_string(counter++));
SetAttr(desc.Proto(), "max_batch", FLAGS_tensorrt_max_batchsize);
SetAttr(desc.Proto(), "max_workspace", FLAGS_tensorrt_workspace_size);
SetAttr(desc.Proto(), "parameters", ExtractParameters(graph.nodes.nodes()));
SetAttr(desc.Proto(), "output_name_mapping", output_mapping);
node->SetPbMsg(desc.Proto()->SerializeAsString());
}
@ -146,15 +226,17 @@ void DataFlowGraphToFluidPass::AddEngineOp(Node *node) {
LOG(INFO) << "transformed variable size: "
<< block_desc.Proto()->vars().size();
// copy ops.
for (auto *node : block_node->subgraph) {
auto *op = block_desc.AppendOp();
PADDLE_ENFORCE(!node->pb_msg().empty());
op->Proto()->ParseFromString(node->pb_msg());
}
*block_desc.Proto()->mutable_vars() =
argument_->origin_program_desc->blocks(0).vars();
PADDLE_ENFORCE(!block_desc.Proto()->vars().empty());
CreateTrtEngineOp(node, *argument_->main_dfg, *block_desc.Proto());
CreateTrtEngineOp(node, *argument_->main_dfg, block_desc.Proto());
auto *main_block = desc_->mutable_blocks(framework::kRootBlockIndex);
auto *op = main_block->add_ops();
PADDLE_ENFORCE(!node->pb_msg().empty(), "failed to set desc for block");

@ -46,9 +46,9 @@ std::string DFG_GraphvizDrawPass::Draw(DataFlowGraph *graph) {
for (size_t i = 0; i < graph->nodes.size(); i++) {
const Node &node = graph->nodes.Get(i);
if (!config_.display_deleted_node && node.deleted()) continue;
for (auto &in : node.inlinks) {
if (!config_.display_deleted_node && in->deleted()) continue;
dot.AddEdge(in->repr(), node.repr(), {});
for (auto &out : node.outlinks) {
if (!config_.display_deleted_node && out->deleted()) continue;
dot.AddEdge(node.repr(), out->repr(), {});
}
}
return dot.Build();

@ -76,7 +76,7 @@ void UnionFindCombine(const node_map_t &node_map, size_t a, size_t b) {
std::vector<std::vector<Node *>> SubGraphSplitter::ExtractSubGraphs() {
std::vector<Node *> marked_nodes;
for (auto &node : GraphTraits<DataFlowGraph>(graph_).nodes()) {
for (auto &node : GraphTraits<DataFlowGraph>(graph_).nodes_in_TS()) {
if (node.attr(kMarkerAttrName).Bool()) {
marked_nodes.push_back(&node);
}

@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
namespace paddle {
@ -40,19 +41,36 @@ PaddleBuf::PaddleBuf(PaddleBuf&& other)
PaddleBuf::PaddleBuf(const PaddleBuf& other) { *this = other; }
PaddleBuf& PaddleBuf::operator=(const PaddleBuf& other) {
if (!other.memory_owned_) {
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
} else {
Resize(other.length());
memcpy(data_, other.data(), other.length());
length_ = other.length();
memory_owned_ = true;
}
return *this;
}
PaddleBuf& PaddleBuf::operator=(PaddleBuf&& other) {
// only the buffer with external memory can be copied
assert(!other.memory_owned_);
data_ = other.data_;
length_ = other.length_;
memory_owned_ = other.memory_owned_;
other.data_ = nullptr;
other.length_ = 0;
other.memory_owned_ = false;
return *this;
}
void PaddleBuf::Resize(size_t length) {
// Only the owned memory can be reset, the external memory can't be changed.
if (length_ == length) return;
assert(memory_owned_);
Free();
if (memory_owned_) {
Free();
}
data_ = new char[length];
length_ = length;
memory_owned_ = true;
@ -68,7 +86,7 @@ void PaddleBuf::Reset(void* data, size_t length) {
void PaddleBuf::Free() {
if (memory_owned_ && data_) {
assert(length_ > 0);
delete static_cast<char*>(data_);
delete[] static_cast<char*>(data_);
data_ = nullptr;
length_ = 0;
}

@ -40,11 +40,12 @@ class PaddleBuf {
// Copy only available when memory is managed externally.
explicit PaddleBuf(const PaddleBuf&);
PaddleBuf& operator=(const PaddleBuf&);
PaddleBuf& operator=(PaddleBuf&&);
// Do not own the memory.
PaddleBuf(void* data, size_t length)
: data_(data), length_(length), memory_owned_{false} {}
// Own memory.
explicit PaddleBuf(size_t length)
PaddleBuf(size_t length)
: data_(new char[length]), length_(length), memory_owned_(true) {}
// Resize to `length` bytes.
void Resize(size_t length);

@ -1,6 +1,7 @@
# Add TRT tests
nv_library(tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc pool2d_op.cc elementwise_op.cc
activation_op.cc
DEPS tensorrt_engine operator scope framework_proto op_registry)
nv_test(test_op_converter SRCS test_op_converter.cc DEPS

@ -55,7 +55,6 @@ class OpConverter {
it = Registry<OpConverter>::Lookup("fc");
}
}
if (op_desc.Type().find("elementwise") != std::string::npos) {
static std::unordered_set<std::string> add_tensor_op_set{
"add", "mul", "sub", "div", "max", "min", "pow"};
@ -72,6 +71,8 @@ class OpConverter {
"Unsupported elementwise type" + op_type);
it =
Registry<OpConverter>::Lookup("elementwise_" + op_type + "_weight");
PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
op_desc.Type());
} else {
PADDLE_ENFORCE(add_tensor_op_set.count(op_type) > 0,
"Unsupported elementwise type" + op_type);

@ -534,8 +534,8 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
const framework::Tensor& dout, int axis,
framework::Tensor* dx, framework::Tensor* dy,
DX_OP dx_op, DY_OP dy_op) {
const framework::DDim x_dim = x.dims();
const framework::DDim y_dim = y.dims();
const framework::DDim& x_dim = x.dims();
const framework::DDim& y_dim = y.dims();
if (x.dims() == y.dims()) {
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, x_dim, y_dim, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
@ -558,19 +558,19 @@ void ElemwiseExplicitGradCompute(const framework::ExecutionContext& ctx,
framework::Tensor* dx, framework::Tensor* dy,
DX_OP dx_op, DY_OP dy_op) {
if (dy == nullptr) {
const framework::DDim dx_dims = dout.dims();
const framework::DDim& dx_dims = dout.dims();
auto dy_dims = dx_dims;
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
} else {
if (dout.dims() == dy->dims()) {
const framework::DDim dx_dims = dout.dims();
const framework::DDim dy_dims = dy->dims();
const framework::DDim& dx_dims = dout.dims();
const framework::DDim& dy_dims = dy->dims();
ElemwiseGradComputeNoBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
} else { // Y is a scalar
auto dx_dims = dout.dims();
const framework::DDim dy_dims = dy->dims();
const framework::DDim& dy_dims = dy->dims();
ElemwiseGradComputeWithBroadcast<DeviceContext, T, DX_OP, DY_OP>(
ctx, dx_dims, dy_dims, x, y, out, dout, axis, dx, dy, dx_op, dy_op);
}

@ -0,0 +1,221 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/operators/fused_elemwise_activation_op.h"
namespace paddle {
namespace operators {
class FusedElemwiseActivationOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(
ctx->HasInput("X"),
"Input(X) of FusedElemwiseActivationOp op should not be null.");
PADDLE_ENFORCE(
ctx->HasInput("Y"),
"Input(Y) of FusedElemwiseActivationOp op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("Out"),
"Output(Out) of FusedElemwiseActivationOp op should not be null.");
auto x_dim = ctx->GetInputDim("X");
auto y_dim = ctx->GetInputDim("Y");
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
"Rank of first input must >= rank of second input.");
ctx->SetOutputDim("Out", x_dim);
ctx->ShareLoD("X", /*->*/ "Out");
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.Input<framework::Tensor>("X")->type(),
ctx.Input<framework::Tensor>("Y")->type(),
"The element's type of input should be the same.");
auto input_data_type =
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type());
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
class FusedElemwiseActivationMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(vector<Tensor>)");
AddInput("Y", "(vector<Tensor>)");
AddOutput("Out", "vector<Tensor>");
AddAttr<int>("axis",
"axis is used by elementwise_op, the default value is -1.")
.SetDefault(-1);
AddAttr<float>("scale",
"scale is used by scale_op, the default value is 0.0.")
.SetDefault(0.0);
AddAttr<bool>("recomputation",
"Whether to recompute the Out."
"fused_elemwise_activation_grad has two methods to get the "
"dx and dy, one "
"is to use the 'Out', and the other is not to use it. "
"The former method will save the time of recomputing the "
"'Out', but it must occupy the memory to store the 'out'. "
"While, the later method can avoid occupying the memory, "
"but it must recompute the 'Out'. The default value is true.")
.SetDefault(true);
AddAttr<std::vector<std::string>>("functor_list",
"The functors that should be fused.")
.AddCustomChecker([&](const std::vector<std::string> &functor_list) {
PADDLE_ENFORCE(ValidCheck(functor_list));
});
AddComment(R"DOC(
FusedElemwiseActivation Operator.
At present, FusedElemwiseActivation only supports Two kinds of compound
operators (elementwise_op and activation_op):
Z = Binary(X, Unary(Y))
Z = Unary(Binary(X, Y))
The attributions of activation_op can be get from fused_elemwise_activation_op's
attributions. functor_list records the functors to be fused, for example
"scale,elementwise_add".
)DOC");
}
private:
bool ValidCheck(const std::vector<std::string> &functors) {
std::unordered_set<std::string> unary_fun = {"scale", "relu"};
std::unordered_set<std::string> binary_fun = {"elementwise_add"};
std::string unary_fun_str;
if (binary_fun.count(functors[0])) {
unary_fun_str = functors[1];
} else if (binary_fun.count(functors[1])) {
unary_fun_str = functors[0];
} else {
PADDLE_THROW("%s and %s are not included in fused_list.", functors[0],
functors[1]);
}
PADDLE_ENFORCE_EQ(unary_fun.count(unary_fun_str), 1,
"%s is not included in fused_list.", unary_fun_str);
return true;
}
};
class FusedElemwiseActivationGradMaker
: public framework::SingleGradOpDescMaker {
public:
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
protected:
std::unique_ptr<framework::OpDesc> Apply() const override {
auto *op_desc_ptr = new framework::OpDesc();
op_desc_ptr->SetType(this->ForwardOpType() + "_grad");
for (auto &input_param : this->InputNames()) {
op_desc_ptr->SetInput(input_param, this->Input(input_param));
op_desc_ptr->SetOutput(framework::GradVarName(input_param),
this->InputGrad(input_param, true));
}
for (auto &output_param : this->OutputNames()) {
op_desc_ptr->SetInput(output_param, this->Output(output_param));
op_desc_ptr->SetInput(framework::GradVarName(output_param),
this->OutputGrad(output_param));
}
op_desc_ptr->SetAttrMap(this->Attrs());
std::vector<std::string> functor_names =
boost::get<std::vector<std::string>>(
op_desc_ptr->GetAttr("functor_list"));
functor_names[0] += "_grad";
functor_names[1] += "_grad";
op_desc_ptr->SetAttr("functor_list", functor_names);
return std::unique_ptr<framework::OpDesc>(op_desc_ptr);
}
};
class FusedElemwiseActivationOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");
auto x_grad_name = framework::GradVarName("X");
auto y_grad_name = framework::GradVarName("Y");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
if (ctx->HasOutput(y_grad_name)) {
ctx->SetOutputDim(y_grad_name, y_dims);
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto input_data_type_index = ctx.Input<framework::Tensor>("X")->type();
PADDLE_ENFORCE_EQ(input_data_type_index,
ctx.Input<framework::Tensor>("Y")->type(),
"The element's type of input should be the same.");
PADDLE_ENFORCE_EQ(
input_data_type_index,
ctx.Input<framework::Tensor>(framework::GradVarName("Out"))->type(),
"The element's type of input should be the same.");
auto input_data_type = framework::ToDataType(input_data_type_index);
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_elemwise_activation, ops::FusedElemwiseActivationOp,
ops::FusedElemwiseActivationMaker,
ops::FusedElemwiseActivationGradMaker);
REGISTER_OPERATOR(fused_elemwise_activation_grad,
ops::FusedElemwiseActivationOpGrad);
REGISTER_OP_CPU_KERNEL(
fused_elemwise_activation,
ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
float>,
ops::FusedElemwiseActivationKernel<paddle::platform::CPUDeviceContext,
double>);
REGISTER_OP_CPU_KERNEL(
fused_elemwise_activation_grad,
ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
float>,
ops::FusedElemwiseActivationGradKernel<paddle::platform::CPUDeviceContext,
double>);

@ -0,0 +1,30 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused_elemwise_activation_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
fused_elemwise_activation,
ops::FusedElemwiseActivationKernel<paddle::platform::CUDADeviceContext,
float>,
ops::FusedElemwiseActivationKernel<paddle::platform::CUDADeviceContext,
double>);
REGISTER_OP_CUDA_KERNEL(
fused_elemwise_activation_grad,
ops::FusedElemwiseActivationGradKernel<paddle::platform::CUDADeviceContext,
float>,
ops::FusedElemwiseActivationGradKernel<paddle::platform::CUDADeviceContext,
double>);

File diff suppressed because it is too large Load Diff

@ -0,0 +1,71 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
namespace paddle {
namespace operators {
namespace math {
// AddFunctor
template <typename T>
struct AddFunctor {
// out = x + y;
inline HOSTDEVICE T operator()(T x, T y) { return x + y; }
};
template <typename T>
struct AddGradFunctor {
inline HOSTDEVICE T operator()(T x, T y) { return 1; }
inline HOSTDEVICE T operator()(T x, T y, T out) const { return 1; }
};
template <typename T>
struct ScaleFunctor {
explicit ScaleFunctor(const T coeff) : coeff_(coeff) {}
inline HOSTDEVICE T operator()(T ele) { return ele * coeff_; }
private:
T coeff_;
};
template <typename T>
struct ScaleGradFunctor {
explicit ScaleGradFunctor(T coeff) : coeff_(coeff) {}
inline HOSTDEVICE T operator()(T x) { return coeff_; }
inline HOSTDEVICE T operator()(T x, T out) { return coeff_; }
private:
T coeff_;
};
template <typename T>
struct ReluFunctor {
inline HOSTDEVICE T operator()(T x) { return x * (x > 0); }
};
template <typename T>
struct ReluGradFunctor {
inline HOSTDEVICE T operator()(T x) { return x > 0 ? 1 : 0; }
inline HOSTDEVICE T operator()(T x, T out) { return x > 0 ? 1 : 0; }
};
} // namespace math
} // namespace operators
} // namespace paddle

@ -163,12 +163,11 @@ class ParallelDoOp : public framework::OperatorBase {
auto &place = places[place_idx];
auto *cur_scope = sub_scopes[place_idx];
workers.emplace_back(
framework::Async([program, cur_scope, place, block, place_idx] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
false /*create_local_scope*/);
}));
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
false /*create_local_scope*/);
}));
}
for (auto &worker : workers) {
worker.wait();
@ -239,12 +238,11 @@ class ParallelDoGradOp : public framework::OperatorBase {
auto *cur_scope = sub_scopes[i];
// execute
workers.emplace_back(
framework::Async([program, cur_scope, place, block, i] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
false /*create_local_scope*/);
}));
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
false /*create_local_scope*/);
}));
}
for (auto &worker : workers) {
worker.wait();

@ -55,18 +55,8 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
"TensorRT' tensor input requires at least 2 dimensions");
PADDLE_ENFORCE_LE(shape.size(), 4UL,
"TensorRT' tensor input requires at most 4 dimensions");
switch (shape.size()) {
case 2:
return nvinfer1::Dims2(1, shape[1]);
case 3:
return nvinfer1::Dims3(1, shape[1], shape[2]);
case 4:
return nvinfer1::Dims4(1, shape[1], shape[2], shape[3]);
default:
return nvinfer1::Dims();
}
return nvinfer1::Dims();
PADDLE_ENFORCE_EQ(shape.size(), 4UL);
return nvinfer1::DimsCHW(shape[1], shape[2], shape[3]);
}
} // namespace
@ -86,6 +76,9 @@ void TensorRTEngineKernel<DeviceContext, T>::Prepare(
parameters.insert(param);
}
std::vector<std::string> output_maps =
context.Attr<std::vector<std::string>>("output_name_mapping");
// TODO(Superjomn) replace this with a different stream
auto *engine = Singleton<TRT_EngineManager>::Global().Create(
max_batch, max_workspace, nullptr /*engine hold its own stream*/,
@ -97,6 +90,7 @@ void TensorRTEngineKernel<DeviceContext, T>::Prepare(
// Add inputs
VLOG(4) << "declare inputs";
for (auto &input : context.Inputs("Xs")) {
if (parameters.count(input)) continue;
VLOG(4) << "declare input " << input;
auto *var = block.FindVar(input);
// TensorRT engine need to create parameters. The parameter's description
@ -122,7 +116,7 @@ void TensorRTEngineKernel<DeviceContext, T>::Prepare(
block_desc, parameters, context.scope(), engine);
// Add outputs
for (auto &output : context.Outputs("Ys")) {
for (auto &output : output_maps) {
engine->DeclareOutput(output);
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save