parent
c7cd6d130b
commit
f67f0cae50
@ -0,0 +1,88 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def bilinear_interp_np(input, out_h, out_w):
|
||||
batch_size, channel, in_h, in_w = input.shape
|
||||
if out_h > 1:
|
||||
ratio_h = (in_h - 1.0) / (out_h - 1.0)
|
||||
else:
|
||||
ratio_h = 0.0
|
||||
if out_w > 1:
|
||||
ratio_w = (in_w - 1.0) / (out_w - 1.0)
|
||||
else:
|
||||
ratio_w = 0.0
|
||||
|
||||
out = np.zeros((batch_size, channel, out_h, out_w))
|
||||
for i in range(out_h):
|
||||
h = int(ratio_h * i)
|
||||
hid = 1 if h < in_h - 1 else 0
|
||||
h1lambda = ratio_h * i - h
|
||||
h2lambda = 1.0 - h1lambda
|
||||
for j in range(out_w):
|
||||
w = int(ratio_w * j)
|
||||
wid = 1 if w < in_w - 1 else 0
|
||||
w1lambda = ratio_w * j - w
|
||||
w2lambda = 1.0 - w1lambda
|
||||
|
||||
out[:, :, i, j] = h2lambda*(w2lambda*input[:, :, h, w] +
|
||||
w1lambda*input[:, :, h, w+wid]) + \
|
||||
h1lambda*(w2lambda*input[:, :, h+hid, w] +
|
||||
w1lambda*input[:, :, h+hid, w+wid])
|
||||
return out.astype("float32")
|
||||
|
||||
|
||||
class TestBilinearInterpOp(OpTest):
|
||||
def setUp(self):
|
||||
self.init_test_case()
|
||||
self.op_type = "bilinear_interp"
|
||||
input_np = np.random.random(self.input_shape).astype("float32")
|
||||
output_np = bilinear_interp_np(input_np, self.out_h, self.out_w)
|
||||
|
||||
self.inputs = {'X': input_np}
|
||||
self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
|
||||
self.outputs = {'Out': output_np}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out', in_place=True)
|
||||
|
||||
def init_test_case(self):
|
||||
self.input_shape = [2, 3, 4, 4]
|
||||
self.out_h = 2
|
||||
self.out_w = 2
|
||||
|
||||
|
||||
class TestCase1(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [4, 1, 7, 8]
|
||||
self.out_h = 1
|
||||
self.out_w = 1
|
||||
|
||||
|
||||
class TestCase2(TestBilinearInterpOp):
|
||||
def init_test_case(self):
|
||||
self.input_shape = [3, 3, 9, 6]
|
||||
self.out_h = 12
|
||||
self.out_w = 12
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue