parent
							
								
									c7cd6d130b
								
							
						
					
					
						commit
						f67f0cae50
					
				@ -0,0 +1,88 @@
 | 
				
			||||
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
import unittest
 | 
				
			||||
import numpy as np
 | 
				
			||||
from op_test import OpTest
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def bilinear_interp_np(input, out_h, out_w):
 | 
				
			||||
    batch_size, channel, in_h, in_w = input.shape
 | 
				
			||||
    if out_h > 1:
 | 
				
			||||
        ratio_h = (in_h - 1.0) / (out_h - 1.0)
 | 
				
			||||
    else:
 | 
				
			||||
        ratio_h = 0.0
 | 
				
			||||
    if out_w > 1:
 | 
				
			||||
        ratio_w = (in_w - 1.0) / (out_w - 1.0)
 | 
				
			||||
    else:
 | 
				
			||||
        ratio_w = 0.0
 | 
				
			||||
 | 
				
			||||
    out = np.zeros((batch_size, channel, out_h, out_w))
 | 
				
			||||
    for i in range(out_h):
 | 
				
			||||
        h = int(ratio_h * i)
 | 
				
			||||
        hid = 1 if h < in_h - 1 else 0
 | 
				
			||||
        h1lambda = ratio_h * i - h
 | 
				
			||||
        h2lambda = 1.0 - h1lambda
 | 
				
			||||
        for j in range(out_w):
 | 
				
			||||
            w = int(ratio_w * j)
 | 
				
			||||
            wid = 1 if w < in_w - 1 else 0
 | 
				
			||||
            w1lambda = ratio_w * j - w
 | 
				
			||||
            w2lambda = 1.0 - w1lambda
 | 
				
			||||
 | 
				
			||||
            out[:, :, i, j] = h2lambda*(w2lambda*input[:, :, h, w] +
 | 
				
			||||
                                        w1lambda*input[:, :, h, w+wid]) + \
 | 
				
			||||
                              h1lambda*(w2lambda*input[:, :, h+hid, w] +
 | 
				
			||||
                                        w1lambda*input[:, :, h+hid, w+wid])
 | 
				
			||||
    return out.astype("float32")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestBilinearInterpOp(OpTest):
 | 
				
			||||
    def setUp(self):
 | 
				
			||||
        self.init_test_case()
 | 
				
			||||
        self.op_type = "bilinear_interp"
 | 
				
			||||
        input_np = np.random.random(self.input_shape).astype("float32")
 | 
				
			||||
        output_np = bilinear_interp_np(input_np, self.out_h, self.out_w)
 | 
				
			||||
 | 
				
			||||
        self.inputs = {'X': input_np}
 | 
				
			||||
        self.attrs = {'out_h': self.out_h, 'out_w': self.out_w}
 | 
				
			||||
        self.outputs = {'Out': output_np}
 | 
				
			||||
 | 
				
			||||
    def test_check_output(self):
 | 
				
			||||
        self.check_output()
 | 
				
			||||
 | 
				
			||||
    def test_check_grad(self):
 | 
				
			||||
        self.check_grad(['X'], 'Out', in_place=True)
 | 
				
			||||
 | 
				
			||||
    def init_test_case(self):
 | 
				
			||||
        self.input_shape = [2, 3, 4, 4]
 | 
				
			||||
        self.out_h = 2
 | 
				
			||||
        self.out_w = 2
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase1(TestBilinearInterpOp):
 | 
				
			||||
    def init_test_case(self):
 | 
				
			||||
        self.input_shape = [4, 1, 7, 8]
 | 
				
			||||
        self.out_h = 1
 | 
				
			||||
        self.out_w = 1
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestCase2(TestBilinearInterpOp):
 | 
				
			||||
    def init_test_case(self):
 | 
				
			||||
        self.input_shape = [3, 3, 9, 6]
 | 
				
			||||
        self.out_h = 12
 | 
				
			||||
        self.out_w = 12
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == "__main__":
 | 
				
			||||
    unittest.main()
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue