Adding fluid distributed training guide doc (#7619)
* init check in for fluid dist train doc * gramma update * minor tweaks * update following commentsadd_depthwiseConv_op_gpu
parent
b8a17987ec
commit
f6dfccb6e8
@ -0,0 +1,138 @@
|
||||
# Fluid Distributed Training
|
||||
|
||||
## Introduction
|
||||
|
||||
In this article, we'll explain how to config and run distributed training jobs with PaddlePaddle Fluid in a bare metal cluster.
|
||||
|
||||
## Preparations
|
||||
|
||||
### Get your cluster ready
|
||||
|
||||
Prepare your computer nodes in the cluster. Nodes in this cluster can be of any specification that runs PaddlePaddle, and with a unique IP address assigned to it. Make sure they can communicate with each other.
|
||||
|
||||
### Have PaddlePaddle installed
|
||||
|
||||
PaddlePaddle must be installed on all nodes. If you have GPU cards on your nodes, be sure to properly install drivers and CUDA libraries.
|
||||
|
||||
PaddlePaddle build and installation guide can be found from [here](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html).
|
||||
|
||||
### Update training script
|
||||
|
||||
#### Non-cluster training script
|
||||
|
||||
Let's take [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html)'s first chapter: "fit a line" as an example.
|
||||
|
||||
This demo's non-cluster version with fluid API is as follows:
|
||||
|
||||
``` python
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.fluid as fluid
|
||||
|
||||
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
||||
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
BATCH_SIZE = 20
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.uci_housing.train(), buf_size=500),
|
||||
batch_size=BATCH_SIZE)
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
PASS_NUM = 100
|
||||
for pass_id in range(PASS_NUM):
|
||||
fluid.io.save_persistables(exe, "./fit_a_line.model/")
|
||||
fluid.io.load_persistables(exe, "./fit_a_line.model/")
|
||||
for data in train_reader():
|
||||
avg_loss_value, = exe.run(fluid.default_main_program(),
|
||||
feed=feeder.feed(data),
|
||||
fetch_list=[avg_cost])
|
||||
|
||||
if avg_loss_value[0] < 10.0:
|
||||
exit(0) # if avg cost less than 10.0, we think our code is good.
|
||||
exit(1)
|
||||
```
|
||||
|
||||
We created a simple fully connected neural networks training program and handed it to the fluid executor to run for 100 passes.
|
||||
|
||||
Now let's try to convert it to a distributed version to run in a cluster.
|
||||
|
||||
#### Introducing parameter server
|
||||
|
||||
As you see from the non-cluster version of training script, there is only one role in it: the trainer, who does the computing as well as holding parameters. In cluster training, since multi-trainers are working on the same task, they need one centralized place to hold and distribute parameters. This centralized place is called the Parameter Server in PaddlePaddle.
|
||||
|
||||

|
||||
|
||||
Parameter Server in fluid does not only hold parameters but is also assigned with a part of the program. Trainers communicate with parameter servers via send/receive OPs. For more tech detail, please refer to this [document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/dist_refactor/distributed_architecture.md).
|
||||
|
||||
Now we need to create program for both trainers and parameter servers, the question is how?
|
||||
|
||||
#### Slice the program
|
||||
|
||||
Fluid provides a tool called "Distribute Transpiler" to automatically convert the non-cluster program into cluster program.
|
||||
|
||||
The idea behind this tool is to find optimize OPs and gradient parameters, slice the program into 2 pieces and connect them with send/receive OP.
|
||||
|
||||
Optimize OPs and gradient parameters can be found from the return values of optimizer's minimize function.
|
||||
|
||||
To put them together:
|
||||
|
||||
``` python
|
||||
... #define the program, cost, and create sgd optimizer
|
||||
|
||||
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost) #get optimize OPs and gradient parameters
|
||||
|
||||
t = fluid.DistributeTranspiler() # create transpiler instance
|
||||
# slice the program into 2 pieces with optimizer_ops and gradient parameters list, as well as pserver_endpoints, which is a comma separated list of [IP:PORT] and number of trainers
|
||||
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
|
||||
|
||||
... #create executor
|
||||
|
||||
# in pserver, run this
|
||||
exe.run(fluid.default_startup_program())
|
||||
#current_endpoint here means current pserver IP:PORT you wish to run on
|
||||
exe.run(t.get_pserver_program(current_endpoint, optimize_ops))
|
||||
|
||||
# in trainer, run this
|
||||
... # define data reader
|
||||
exe.run(fluid.default_startup_program())
|
||||
for pass_id in range(100):
|
||||
for data in train_reader():
|
||||
exe.run(t.get_trainer_program())
|
||||
|
||||
|
||||
```
|
||||
|
||||
### E2E demo
|
||||
|
||||
Please find the complete demo from [here](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book_distribute/notest_dist_fit_a_line.py). In parameter server node run this in the command line:
|
||||
|
||||
``` bash
|
||||
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=PSERVER python notest_dist_fit_a_line.py
|
||||
```
|
||||
|
||||
*please note we assume that your parameter server runs at 192.168.1.2:6174*
|
||||
|
||||
Wait until the prompt `Server listening on 192.168.1.2:6174`
|
||||
|
||||
Then in 2 of your trainer node run this:
|
||||
|
||||
``` bash
|
||||
PSERVERS=192.168.1.2:6174 SERVER_ENDPOINT=192.168.1.2:6174 TRAINING_ROLE=TRAINER python notest_dist_fit_a_line.py
|
||||
```
|
||||
|
||||
*the reason you need to run this command twice in 2 nodes is: in the script we set the trainer count to be 2. You can change this setting on line 50*
|
||||
|
||||
Now you have 2 trainers and 1 parameter server up and running.
|
Loading…
Reference in new issue