enable pipeline to run with Executor.run() (#28373)
* update, test=developmusl/disable_test_yolov3_temporarily
parent
9f642ed881
commit
f77a78cdee
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,136 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import time
|
||||
import math
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.profiler as profiler
|
||||
from paddle.fluid import core
|
||||
import unittest
|
||||
from multiprocessing import Process
|
||||
import os
|
||||
import signal
|
||||
from functools import reduce
|
||||
from test_dist_base import TestDistRunnerBase, runtime_main
|
||||
import paddle.distributed.fleet as fleet
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
DTYPE = "float32"
|
||||
paddle.dataset.mnist.fetch()
|
||||
|
||||
# Fix seed for test
|
||||
fluid.default_startup_program().random_seed = 1
|
||||
fluid.default_main_program().random_seed = 1
|
||||
|
||||
|
||||
def cnn_model(data):
|
||||
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||
input=data,
|
||||
filter_size=5,
|
||||
num_filters=20,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu",
|
||||
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
||||
value=0.01)))
|
||||
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||
input=conv_pool_1,
|
||||
filter_size=5,
|
||||
num_filters=50,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu",
|
||||
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
||||
value=0.01)))
|
||||
|
||||
SIZE = 10
|
||||
input_shape = conv_pool_2.shape
|
||||
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
|
||||
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
||||
|
||||
predict = fluid.layers.fc(
|
||||
input=conv_pool_2,
|
||||
size=SIZE,
|
||||
act="softmax",
|
||||
param_attr=fluid.param_attr.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.01)))
|
||||
return predict
|
||||
|
||||
|
||||
class TestDistMnist2x2(TestDistRunnerBase):
|
||||
def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
|
||||
# Input data
|
||||
with fluid.device_guard("gpu:0"):
|
||||
images = fluid.layers.data(
|
||||
name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
if dist_strategy:
|
||||
data_loader = fluid.io.DataLoader.from_generator(
|
||||
feed_list=[images, label],
|
||||
capacity=64,
|
||||
use_double_buffer=False,
|
||||
iterable=False)
|
||||
# Train program
|
||||
predict = cnn_model(images)
|
||||
with fluid.device_guard("gpu:1"):
|
||||
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
# Evaluator
|
||||
with fluid.device_guard("gpu:1"):
|
||||
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
||||
batch_acc = fluid.layers.accuracy(
|
||||
input=predict, label=label, total=batch_size_tensor)
|
||||
|
||||
inference_program = fluid.default_main_program().clone()
|
||||
base_lr = self.lr
|
||||
passes = [30, 60, 80, 90]
|
||||
steps_per_pass = 10
|
||||
bd = [steps_per_pass * p for p in passes]
|
||||
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
|
||||
lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
|
||||
opt = fluid.optimizer.Momentum(learning_rate=lr_val, momentum=0.9)
|
||||
|
||||
# Reader
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.mnist.test(), batch_size=batch_size)
|
||||
test_reader = paddle.batch(
|
||||
paddle.dataset.mnist.test(), batch_size=batch_size)
|
||||
|
||||
if dist_strategy:
|
||||
fleet.init(is_collective=True)
|
||||
strategy = fleet.DistributedStrategy()
|
||||
strategy.pipeline = True
|
||||
dist_opt = fleet.distributed_optimizer(
|
||||
optimizer=opt, strategy=strategy)
|
||||
dist_opt.minimize(avg_cost)
|
||||
else:
|
||||
opt.minimize(avg_cost)
|
||||
|
||||
if dist_strategy:
|
||||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader
|
||||
else:
|
||||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
runtime_main(TestDistMnist2x2)
|
Loading…
Reference in new issue